
0

Department of Computer Science & Engineering

SLIET Longowal

Course Material

of

Object Oriented Programming (CS-221/PCCS-

202)

for

Integrated Certificate & Diploma in Computer

Science (ICD-CS) 4th Sem

Submitted by

Er. Rahul Gautam (A.P., CSE)

1

Title of the course : Object Oriented Programming

Subject Code : CS-221

Weekly load : 6 Hrs LTP 2-0-4

Credit : 4 (Lecture 2, Practical 2)

Course Outcomes: At the end of the course, the student will be able to:

CO1 Apply object-oriented approach to design the programs.

CO2 Understand reusability of code using inheritance.

CO3 Analyze polymorphic and virtual behaviour of functions.

CO4 U Use stream classes in file-handling.

CO/PO Mapping : (Strong(S)/Medium(M)/Weak(W) indicates strength of correlation)

COs
Programme Outcomes (POs)

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10

CO1 S S M S

CO2 S M W S

CO3 S S W S

CO4 S S M S

Theory

Unit Main Topics Course outlines Lecture(s)

Unit-1 1. Introduction

Object-oriented programming, characteristics of object-

oriented languages, C++ Programming Basics: Basic

program construction, Pre-processor directives, variables,

Operators, Library functions, manipulators.

04

2. Decision-

making

Relational operators: loops; decisions; logical operators; other

control Statements
04

3. Structures and

Functions

Structure enumerated data types; functions; passing

arguments to functions and returning values from functions,

unions.

03

4. Classes and

Objects

Creation, accessing class members, Private Vs Public,

Constructor and Destructor Objects.
03

Unit-2

5. Member

Functions

Method definition, Inline functions implementation, Constant

member functions Friend Functions and Friend Classes, Static

functions Overloading Member Functions, Need of operator

overloading, operator overloading

05

6.Inheritance Definition of inheritance, protected data, private data, public

data, inheriting constructors and destructors, constructor for

virtual base classes, constructors and destructors of derived

classes, size of a derived class, order of invocation, types of

inheritance, single inheritance, hierarchical inheritance,

multiple inheritance, hybrid inheritance, multilevel

inheritance.

05

2

7. Polymorphism

and Virtual

Functions

Importance of virtual function, function call binding,

implementing late binding, need for virtual functions, abstract

base classes and pure virtual functions, virtual destructors

04

8. File and

Streams

File and Streams components of a file, different operation of

the file, creation of file streams, stream classes, header files,

updating of file, opening and closing a file.

04

 Total=32

Recommended Books:

1. SB Lippman and J Lajoie,C++ Primer, Addison Wesley ,New Delhi

2. KR Venugopal , Mastering C++ , TMH Publishing

3. E. Balaguruswamy, Object Oriented Programming in C++, TMH Publishing Co. Ltd,

New Delhi.

4. Robert Lafore, C++, Galgotia Publications Pvt. Ltd., Daryaganj, New Delhi.

3

Object Oriented Programming

UNIT-1

1. INTRODUCTION

Object Oriented Programming & their characteristics

As the name suggests, Object-Oriented Programming or OOPs refers to languages that use

objects in programming. Object-oriented programming aims to implement real-world entities

like inheritance, hiding, polymorphism, etc in programming. The main aim of OOP is to bind

together the data and the functions that operate on them so that no other part of the code can

access this data except that function.

OOPs Concepts:

• Class

• Objects

• Data Abstraction

• Encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

• Message Passing

1. Class:

A class is a user-defined data type. It consists of data members and member functions, which

can be accessed and used by creating an instance of that class. It represents the set of

properties or methods that are common to all objects of one type. A class is like a blueprint

for an object.

For Example: Consider the Class of Cars. There may be many cars with different names and

brands but all of them will share some common properties like all of them will have 4 wheels,

Speed Limit, Mileage range, etc. So here, Car is the class, and wheels, speed limits, mileage

are their properties.

2. Object:

It is a basic unit of Object-Oriented Programming and represents the real-life entities. An

Object is an instance of a Class. When a class is defined, no memory is allocated but when it

is instantiated (i.e. an object is created) memory is allocated. An object has an identity, state,

and behavior. Each object contains data and code to manipulate the data. Objects can interact

without having to know details of each other’s data or code, it is sufficient to know the type

of message accepted and type of response returned by the objects.

For example “Dog” is a real-life Object, which has some characteristics like color, Breed,

Bark, Sleep, and Eats.

Fig 1.1 Example of an Object

4

3. Data Abstraction:

Data abstraction is one of the most essential and important features of object-oriented

programming. Data abstraction refers to providing only essential information about the data

to the outside world, hiding the background details or implementation. Consider a real-life

example of a man driving a car. The man only knows that pressing the accelerators will

increase the speed of the car or applying brakes will stop the car, but he does not know about

how on pressing the accelerator the speed is increasing, he does not know about the inner

mechanism of the car or the implementation of the accelerator, brakes, etc in the car. This is

what abstraction is.

4. Encapsulation:

Encapsulation is defined as the wrapping up of data under a single unit. It is the mechanism

that binds together code and the data it manipulates. In Encapsulation, the variables or data

of a class are hidden from any other class and can be accessed only through any member

function of their class in which they are declared. As in encapsulation, the data in a class is

hidden from other classes, so it is also known as data-hiding.

Consider a real-life example of encapsulation, in a company, there are different sections like

the accounts section, finance section, sales section, etc. The finance section handles all the

financial transactions and keeps records of all the data related to finance. Similarly, the sales

section handles all the sales-related activities and keeps records of all the sales. Now there

may arise a situation when for some reason an official from the finance section needs all the

data about sales in a particular month. In this case, he is not allowed to directly access the

data of the sales section. He will first have to contact some other officer in the sales section

and then request him to give the particular data. This is what encapsulation is. Here the data

of the sales section and the employees that can manipulate them are wrapped under a single

name “sales section”.

5. Inheritance:

Inheritance is an important pillar of OOP(Object-Oriented Programming). The capability of

a class to derive properties and characteristics from another class is called Inheritance. When

we write a class, we inherit properties from other classes. So when we create a class, we do

not need to write all the properties and functions again and again, as these can be inherited

from another class that possesses it. Inheritance allows the user to reuse the code whenever

possible and reduce its redundancy.

5

Fig 1.2 Types of Inheritance

6. Polymorphism:

The word polymorphism means having many forms. In simple words, we can define

polymorphism as the ability of a message to be displayed in more than one form. For

example, A person at the same time can have different characteristics. Like a man at the same

time is a father, a husband, an employee. So the same person posses different behavior in

different situations. This is called polymorphism.

Fig 1.3 Types of Polymorphism

7. Dynamic Binding:

6

In dynamic binding, the code to be executed in response to the function call is decided at

runtime. Dynamic binding means that the code associated with a given procedure call is not

known until the time of the call at run time. Dynamic Method Binding One of the main

advantages of inheritance is that some derived class D has all the members of its base class

B. Once D is not hiding any of the public members of B, then an object of D can represent B

in any context where a B could be used. This feature is known as subtype polymorphism.

8. Message Passing:

It is a form of communication used in object-oriented programming as well as parallel

programming. Objects communicate with one another by sending and receiving information

to each other. A message for an object is a request for execution of a procedure and therefore

will invoke a function in the receiving object that generates the desired results. Message

passing involves specifying the name of the object, the name of the function, and the

information to be sent.

Why do we need object-oriented programming

• To make the development and maintenance of projects more effortless.

• To provide the feature of data hiding that is good for security concerns.

• We can solve real-world problems if we are using object-oriented programming.

• It ensures code reusability.

• It lets us write generic code: which will work with a range of data, so we don’t

have to write basic stuff over and over again.

C++ Programming Basics:

C++ is a general-purpose programming language that was developed as an enhancement of

the C language to include object-oriented paradigm. It is an imperative and

a compiled language.

1. C++ is a high-level, general-purpose programming language designed for system

and application programming. It was developed by Bjarne Stroustrup at Bell Labs

in 1983 as an extension of the C programming language. C++ is an object-

oriented, multi-paradigm language that supports procedural, functional, and

generic programming styles.

2. One of the key features of C++ is its ability to support low-level, system-level

programming, making it suitable for developing operating systems, device

drivers, and other system software. At the same time, C++ also provides a rich set

of libraries and features for high-level application programming, making it a

popular choice for developing desktop applications, video games, and other

complex applications.

3. C++ has a large, active community of developers and users, and a wealth of

resources and tools available for learning and using the language. Some of the key

features of C++ include:

4. Object-Oriented Programming: C++ supports object-oriented programming,

allowing developers to create classes and objects and to define methods and

properties for these objects.

5. Templates: C++ templates allow developers to write generic code that can work

with any data type, making it easier to write reusable and flexible code.

6. Standard Template Library (STL): The STL provides a wide range of containers

and algorithms for working with data, making it easier to write efficient and

effective code.

7

7. Exception Handling: C++ provides robust exception handling capabilities,

making it easier to write code that can handle errors and unexpected situations.

Overall, C++ is a powerful and versatile programming language that is widely used for a

range of applications and is well-suited for both low-level system programming and high-

level application development.

Basic Program construction:

Here are some simple C++ code examples to help you understand the language:

1.Hello World:

#include <iostream>

int main() {

 std::cout << "Hello, World!" << std::endl;

 return 0;

}

Output

Hello, World!

Fig 1.4 Execution sequence of a program

C++ is a middle-level language rendering it the advantage of programming low-level

(drivers, kernels) and even higher-level applications (games, GUI, desktop apps etc.). The

basic syntax and code structure of both C and C++ are the same.

Some of the features & key-points to note about the programming language are as follows:

• Simple: It is a simple language in the sense that programs can be broken down

into logical units and parts, has a rich library support and a variety of data-types.

• Machine Independent but Platform Dependent: A C++ executable is not

platform-independent (compiled programs on Linux won’t run on Windows),

however they are machine independent.

• Mid-level language: It is a mid-level language as we can do both systems-

programming (drivers, kernels, networking etc.) and build large-scale user

applications (Media Players, Photoshop, Game Engines etc.)

• Rich library support: Has a rich library support (Both standard ~ built-in data

structures, algorithms etc.) as well 3rd party libraries (e.g. Boost libraries) for fast

and rapid development.

• Speed of execution: C++ programs excel in execution speed. Since, it is a

compiled language, and also hugely procedural. Newer languages have extra in-

built default features such as garbage-collection, dynamic typing etc. which slow

8

the execution of the program overall. Since there is no additional processing

overhead like this in C++, it is blazing fast.

• Pointer and direct Memory-Access: C++ provides pointer support which aids

users to directly manipulate storage address. This helps in doing low-level

programming (where one might need to have explicit control on the storage of

variables).

• Object-Oriented: One of the strongest points of the language which sets it apart

from C. Object-Oriented support helps C++ to make maintainable and extensible

programs. i.e. Large-scale applications can be built. Procedural code becomes

difficult to maintain as code-size grows.

• Compiled Language: C++ is a compiled language, contributing to its speed.

Here are some key points to keep in mind while working with C++:

1. Object-Oriented Programming: C++ is an object-oriented programming

language, which means that it allows you to define classes and objects to model

real-world entities and their behavior.

2. Strong Type System: C++ has a strong type system, which means that variables

have a specific type and that type must be respected in all operations performed

on that variable.

3. Low-level Access: C++ provides low-level access to system resources, which

makes it a suitable choice for system programming and writing efficient code.

4. Standard Template Library (STL): The STL provides a large set of pre-written

algorithms and data structures that can be used to simplify your code and make it

more efficient.

5. Cross-platform Compatibility: C++ can be compiled and run on multiple

platforms, including Windows, MacOS, and Linux, making it a versatile language

for developing cross-platform applications.

6. Performance: C++ is a compiled language, which means that code is

transformed into machine code before it is executed. This can result in faster

execution times and improved performance compared to interpreted languages

like Python.

7. Memory Management: C++ requires manual memory management, which can

lead to errors if not done correctly. However, this also provides more control over

the program’s memory usage and can result in more efficient memory usage.

8. Syntax: C++ has a complex syntax that can be difficult to learn, especially for

beginners. However, with practice and experience, it becomes easier to understand

and work with.

These are some of the key points to keep in mind when working with C++. By understanding

these concepts, you can make informed decisions and write effective code in this language.

Applications of C++:

C++ finds varied usage in applications such as:

• Operating Systems & Systems Programming. e.g. Linux-based OS (Ubuntu etc.)

• Browsers (Chrome & Firefox)

• Graphics & Game engines (Photoshop, Blender, Unreal-Engine)

• Database Engines (MySQL, MongoDB, Redis etc.)

• Cloud/Distributed Systems

Advantages of C++:

9

1. Performance: C++ is a compiled language, which means that its code is

compiled into machine-readable code, making it one of the fastest programming

languages.

2. Object-Oriented Programming: C++ supports object-oriented programming,

which makes it easier to write and maintain large, complex applications.

3. Standard Template Library (STL): The STL provides a wide range of algorithms

and data structures for working with data, making it easier to write efficient and

effective code.

4. Machine Independent: C++ is not tied to any hardware or processor. If the

compiler compiles the program in the system, it will be able to run no matter what

the hardware is.

5. Large Community: C++ has a large, active community of developers and users,

providing a wealth of resources and support for learning and using the language.

Disadvantages of C++:

1. Steep Learning Curve: C++ can be challenging to learn, especially for beginners,

due to its complexity and the number of concepts that need to be understood.

2. Verbose Syntax: C++ has a verbose syntax, which can make code longer and

more difficult to read and maintain.

3. Error-Prone: C++ provides low-level access to system resources, which can lead

to subtle errors that are difficult to detect and fix.

Some interesting facts about C++:

Here are some awesome facts about C++ that may interest you:

1. The name of C++ signifies the evolutionary nature of the changes from C. “++”

is the C increment operator.

2. C++ is one of the predominant languages for the development of all kind of

technical and commercial software.

3. C++ introduces Object-Oriented Programming, not present in C. Like other

things, C++ supports the four primary features of OOP: encapsulation,

polymorphism, abstraction, and inheritance.

4. C++ got the OOP features from Simula67 Programming language.

5. A function is a minimum requirement for a C++ program to run.(at least main()

function)

Setting up C++ Development Environment

C++ is a general-purpose programming language and is widely used nowadays for competitive

programming. It has imperative, object-oriented, and generic programming features.

C++ runs on lots of platforms like Windows, Linux, Unix, Mac, etc. Before we start

programming with C++. We will need an environment to be set up on our local computer to

compile and run our C++ programs successfully. If you do not want to set up a local

environment, you can also use online IDEs for compiling your program.

Using Online IDE

IDE stands for an integrated development environment. IDE is a software application that

provides facilities to a computer programmer for developing software. There are many online

IDEs available that you can use to compile and run your programs easily without setting up a

local development environment.

10

// Using online ide of C++

#include <iostream>

using namespace std;

int main()

{

 cout << "Learning C++";

 return 0;

}

Output

Learning C++

Setting up a Local Environment:

For setting up a C++ Integrated Development Environment (IDE) on your local machine you

need to install two important software:

1. C++ Compiler

2. Text Editor

1. C++ Compiler

Once you have installed the text editor and saved your program in a file with the ‘.cpp’

extension, you will need a C++ compiler to compile this file. A compiler is a computer program

that converts high-level language into machine-understandable low-level language. In other

words, we can say that it converts the source code written in a programming language into

another computer language that the computer understands. For compiling a C++ program we

will need a C++ compiler that will convert the source code written in C++ into machine codes.

Below are the details about setting up compilers on different platforms.

Installing GNU GCC on Linux

We will install the GNU GCC compiler on Linux. To install and work with the GCC compiler

on your Linux machine, proceed according to the below steps:

A. You have to first run the below two commands from your Linux terminal window:

sudo apt-get update

sudo apt-get install gcc

sudo apt-get install g++

B. This command will install the GCC compiler on your system. You may also run the below

command:

sudo apt-get install build-essential

This command will install all the libraries which are required to compile and run a C++

program.

11

C. After completing the above step, you should check whether the GCC compiler is installed

in your system correctly or not. To do this you have to run the below-given command from the

Linux terminal:

g++ --version

D. If you have completed the above two steps without any errors, then your Linux environment

is set up and ready to be used to compile C++ programs. In further steps, we will learn how to

compile and run a C++ program on Linux using the GCC compiler.

E. Write your program in a text file and save it with any file name and.CPP extension. We have

written a program to display “Hello World” and saved it in a file with the filename

“helloworld.cpp” on the desktop.

F. Now you have to open the Linux terminal and move to the directory where you have saved

your file. Then you have to run the below command to compile your file:

g++ filename.cpp -o any-name

G. filename.cpp is the name of your source code file. In our case, the name is “helloworld.cpp”

and any-name can be any name of your choice. This name will be assigned to the executable

file which is created by the compiler after compilation. In our case, we choose any-name to be

“hello”.

We will run the above command as:

g++ helloworld.cpp -o hello

H. After executing the above command, you will see a new file is created automatically in the

same directory where you have saved the source file, and the name of this file is the name you

chose as any-name. Now to run your program you have to run the below command:

./hello

I. This command will run your program in the terminal windows.

2. Text Editor

Text Editors are the type of programs used to edit or write texts. We will use text editors to

type our C++ programs. The normal extension of a text file is (.txt) but a text file containing a

C++ program should be saved with a ‘.cpp’ or ‘.c’ extension. Files ending with the extension

‘.CPP’ and ‘.C’ are called source code files and they are supposed to contain source code

written in C++ programming language. These extension helps the compiler to identify that the

file contains a C++ program.

Before beginning programming with C++, one must have a text editor installed to write

programs. Follow the below instructions to install popular code editors like VS Code and

Code::Block on different Operating Systems like windows, Mac OS, etc.

Writing First C++ Program – Hello World Example

The “Hello World” program is the first step towards learning any programming language and

is also one of the most straightforward programs you will learn. It is the basic program that is

used to demonstrate how the coding process works. All you have to do is display the message

“Hello World” on the output screen.

Below is the C++ program to print “Hello World” on the console screen.

// Header file for input output functions

#include <iostream>

using namespace std;

12

// main() function: where the execution of

// C++ program begins

int main() {

 // This statement prints "Hello World"

 cout << "Hello World";

 return 0;

}

Output

Hello World

Let us now understand every line and the terminologies of the above program.

// C++ program to display “Hello World”

This line is a comment line. A comment is used to display additional information about the

program. A comment does not contain any programming logic. When a comment is

encountered by a compiler, the compiler simply skips that line of code.

#include <iostream>

The #include is a preprocessor directive tells the compiler to include the content of a file in the

source code. For example, #include<iostream> tells the compiler to include the input-output

library which contains all C++’s input/output library functions.

using namespace std

This is used to import the entity of the std namespace into the current namespace of the

program. It is basically the space where all the inbuilt features of C++ are declared. For

example, std::cout.

int main() { }

The main() function is the entry point of every C++ program, no matter where the function is

located in the program. The opening braces ‘{‘indicates the beginning of the main function and

the closing braces ‘}’ indicates the ending of the main function.

cout<<“Hello World”;

The cout is a tool (object) that is used to display output on the console screen. Everything

followed by the character << in double quotes” ” is displayed on the output screen. The semi-

colon character at the end of the statement is used to indicate that the statement is ending there.

return 0;

This statement is used to return a value from a function and indicates the finishing of a function.

Here, it is used to sent the signal of successful execution of the main function.

C++ Variables

In C++, variable is a name given to a memory location. It is the basic unit of storage in a

program. The value stored in a variable can be accessed or changed during program

execution.

Creating a Variable:

Creating a variable and giving it a name is called variable definition (sometimes

called variable declaration). The syntax of variable definition is:

type name;

where, type is the type of data that a variable can store, and name is the name assigned to

the variable. Multiple variables of the same type can be defined as:

type name1, name2, name3;

13

The data type of a variable is selected from the list of data types supported by C++.

Example:

To store number without decimal point, we use integer data type.

int num;

Here, int is the keyword used to tell the compiler that the variable with name num will store

integer values.

Initializing:

A variable that is just defined may not contain some valid value. We have to initialize it to

some valid initial value. It is done by using an assignment operator = as shown:

type name;

name = value;

Definition and initialization can also be done in a single step as shown:

type name = value;

where the value should be of the same type as variable.

Example:

int num = 100;

The integer variable num is initialized with the value 100. Values are generally the literals

of the same type.

Accessing:

The main objective of a variable is to store the data so that it can be retrieved later. It can be

done by simply using its assigned name.

Example:

 {...}

 // Creating a single character variable

 char c = 'a';

 // Accessing and printing above variable

 cout << c;

 {...}

Output

a

Updating:

The value stored in the variables can be changed any number of times by simply assigning a

new value using = assignment operator.

Example:

 {...}

 int num = 24;

 cout << num << endl;

 // Assigning new value

 num = 888;

 cout << num << endl;

 {...}

Output

24

14

888

Rules For Naming Variable

The names given to a variable are called identifiers. There are some rules for creating these

identifiers (names):

• A name can only contain letters (A-Z or a-z), digits (0-9), and underscores (_).

• It should start with a letter or an underscore only.

• It is case sensitive.

• The name of the variable should not contain any whitespace and special

characters (i.e. #, $, %, *, etc).

• We cannot use C++ keywords (e.g. float, double, class) as a variable name.

How are variables used?

Variables are the names given to the memory location which stores some value. These names

can be used in any place where the value it stores can be used. For example, we assign values

of the same type to variables. But instead of these values, we can also use variables that store

these values.

 {...}

 int num1 = 10, num2;

 // Assigning num1's value to num2

 num2 = num1;

 cout << num1 << " " << num2;

 {...}

Output

10 10

Addition of two integers can be done in C++ using + operator as shown:

 {...}

 cout << 10 + 20;

 {...}

Output

30

We can do the above operation using the variables that store these two values.

 {...}

 int num1 = 10, num2 = 20;

 cout << num1 + num2;

 {...}

Output

30

Constant Variables

In C++, a constant variable is one whose value cannot be changed after it is initialized. This

is done using the const keyword.

15

#include <iostream>

using namespace std;

int main() {

 const int num = 10;

 cout << num;

 return 0;

}

Scope of Variables is the region inside the program where the variable can be referred to by

using its name. Basically, it is the part of the program where the variable exists. Proper

understanding of this concept requires the understanding of other concepts such as functions,

blocks, etc.

Memory Management of Variables:

When we create or declare a variable, a fixed-size memory block is assigned to the variable,

and its initial value is a garbage value. Initialization assigns a meaningful value using the

assignment operator. Variables essentially manipulate specific memory locations, and their

stored data is accessed via their names.

Fig 1.5 storing a variable

Moreover, different variables may be stored in different section of memory according to

its storage class.

C++ Data Types:

In C++, data types are classified into the following types:

Table 1.1 Data Types

S. No.
Type Description Data Types

1

Basic Data

Types

Built-in or primitive data types that are

used to store simple values.

Int, float, double,

char, bool, void

2

Derived

Data Types
Data types derived from basic types.

Array, pointer,

reference, function

16

S. No.
Type Description Data Types

3

User

defined

Data Types

Custom data types created by the

programmer according to their need.

Class, struct, union,

typedef, using

Let’s see how to use some primitive data types in C++ program.

1. Character Data Type (char)

The character data type is used to store a single character. The keyword used to define a

character is char. Its size is 1 byte and it stores characters enclosed in single quotes (‘ ‘). It can

generally store upto 256 characters according to their ASCII codes.

Syntax

char name;

where name is the identifier assigned to the variable.

Example

#include <iostream>

using namespace std;

int main() {

 // Character variable

 char c = ‘A’;

 cout << c;

 return 0;

}

Output

A

1. Integer Data Type (int)

Integer data type denotes that the given variable can store the integer numbers. The keyword

used to define integers is int. Its size is 4-bytes (for 64-bit compiler) and can store numbers for

binary, octal, decimal and hexadecimal base systems in the range from -2,147,483,648 to

2,147,483,647.

Syntax

int name;

where, name is the identifier assigned to the variable.

Example

#include <iostream>

using namespace std;

int main() {

 // Creating an integer variable

 int x = 25;

 cout << x << endl;

 // Using hexadecimal base value

 x = 0x15;

 cout << x;

 return 0;

}

17

Output

25

21

1. Boolean Data Type (bool)

The Boolean data type is used to store logical values: true(1) or false(0). The keyword used to

define a 17oolean variable is bool. Its size is 1 byte.

Syntax

bool name;

where name is the identifier assigned to the variable.

Example

#include <iostream>

using namespace std;

int main() {

 // Creating a 17oolean variable

 bool isTrue = true;

 cout << isTrue;

 return 0;

}

Output

1

1. Floating Point Data Type (float)

Floating-point data type is used to store numbers with decimal points. The keyword used to

define floating-point numbers is float. Its size is 4 bytes (on 64-bit systems) and can store

values in the range from 1.2E-38 to 3.4e+38.

Syntax

float name;

where, name is the identifier assigned to the variable.

#include <iostream>

using namespace std;

int main() {

 // Floating point variable with a decimal value

 float f = 36.5;

 cout << f;

 return 0;

}

Output

36.5

5. Double Data Type (double)

The double data type is used to store decimal numbers with higher precision. The keyword

used to define double-precision floating-point numbers is double. Its size is 8 bytes (on 64-bit

systems) and can store the values in the range from 1.7e-308 to 1.7e+308

Syntax

double name;

18

where, name is the identifier assigned to the variable.

Example

#include <iostream>

using namespace std;

int main() {

 // double precision floating point variable

 double pi = 3.1415926535;

 cout << pi;

 return 0;

}

Output

3.14159

6. Void Data Type (void)

The void data type represents the absence of value. We cannot create a variable of void type.

It is used for pointer and functions that do not return any value using the keyword void.

Syntax

void functionName();

Example

#include <iostream>

using namespace std;

// Function with void return type

void hello() {

 cout << “Hello, World!” << endl;

}

int main() {

 hello();

 return 0;

}

Output

Hello, World!

Operators in C++:

In C++, an operator is a symbol that operates on a value to perform specific mathematical or

logical computations on given values. They are the foundation of any programming language.

Example:

#include <iostream>

using namespace std;

int main() {

 int a = 10 + 20;

 cout << a;

 return 0;

}

Output

30

19

Explanation: Here, ‘+‘ is an addition operator and does the addition of 10 and 20 operands

and return value 30 as a result.

In C++, operators are classified into 6 types on the basis of type of operation they perform:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Ternary or Conditional Operators

1. Arithmetic Operators

Arithmetic Operators are used to perform arithmetic or mathematical operations on the

operands. For example, ‘+’ is used for addition.

Table 1.2 Arithmetic Operators

Name Symbol Description

Addition + Adds two operands.

Subtraction – Subtracts second operand from the first.

Multiplication * Multiplies two operands.

Division / Divides first operand by the second operand.

Modulo Operation % Returns the remainder an integer division.

Increment ++ Increase the value of operand by 1.

Decrement -- Decrease the value of operand by 1.

Example:

#include <bits/stdc++.h>

using namespace std;

int main() {

 int a = 8, b = 3;

 // Addition

 cout << “a + b = “ << (a + b) << endl;

 // Subtraction

 cout << “a – b = “ << (a – b) << endl;

 // Multiplication

 cout << “a * b = “ << (a * b) << endl;

 // Division

 cout << “a / b = “ << (a / b) << endl;

20

 // Modulo

 cout << “a % b = “ << (a % b) << endl;

 // Increament

 cout << “++a = “ << ++a << endl;

 // Decrement

 cout << “–b = “ << --b;

 return 0;

}

Output

a + b = 11

a – b = 5

a * b = 24

a / b = 2

a % b = 2

++a = 9

--b = 2

Important Points:

• The Modulo operator (%) operator should only be used with integers. Other

operators can also be used with floating point values.

• ++a and a++, both are increment operators, however, both are slightly different.

In ++a, the value of the variable is incremented first and then It is used in the

program. In a++, the value of the variable is assigned first and then It is

incremented. Similarly happens for the decrement operator.

You may have noticed that some operator works on two operands while other work on one. On

the basis of this operators are also classified as:

• Unary: Works on single operand.

• Binary: Works on two operands.

• Ternary: Works on three operands.

2. Relational Operators

Relational Operators are used for the comparison of the values of two operands. For example,

‘>’ check right operand is greater.

Table 1.3 Relational Operators

Name Symbol Description

Is Equal To == Checks both operands are equal

Greater Than
>

Checks first operand is greater than the second

operand

21

Name Symbol Description

Greater Than or Equal

To
>=

Checks first operand is greater than equal to the

second operand

Less Than < Checks first operand is lesser than the second operand

Less Than or Equal To
<=

Checks first operand is lesser than equal to the second

operand

Not Equal To != Checks both operands are not equal

Example

#include <bits/stdc++.h>

using namespace std;

int main() {

 int a = 6, b = 4;

 // Equal operator

 cout << "a == b is " << (a == b) << endl;

 // Greater than operator

 cout << "a > b is " << (a > b) << endl;

 // Greater than Equal to operator

 cout << "a >= b is " << (a >= b) << endl;

 // Lesser than operator

 cout << "a < b is " << (a < b) << endl;

 // Lesser than Equal to operator

 cout << "a <= b is " << (a <= b) << endl;

 // Not equal to operator

 cout << "a != b is " << (a != b);

 return 0;

}

Output

a == b is 0

a > b is 1

a >= b is 1

a < b is 0

a <= b is 0

a != b is 1

22

Note: 0 denotes false and 1 denotes true.

3. Logical Operators

Logical Operators are used to combine two or more conditions or constraints or to complement

the evaluation of the original condition in consideration. The result returns a Boolean value,

i.e., true or false.

Table 1.4 Logical Operators

Name Symbol Description

Logical AND && Returns true only if all the operands are true or non-zero.

Logical OR || Returns true if either of the operands is true or non-zero.

Logical NOT ! Returns true if the operand is false or zero.

Example:

#include <bits/stdc++.h>

using namespace std;

int main() {

 int a = 6, b = 4;

 // Logical AND operator

 cout << "a && b is " << (a && b) << endl;

 // Logical OR operator

 cout << "a || b is " << (a || b) << endl;

 // Logical NOT operator

 cout << "!b is " << (!b);

 return 0;

}

Output

a && b is 1

a || b is 1

!b is 0

4. Bitwise Operators

Bitwise Operators are works on bit-level. So, compiler first converted to bit-level and then the

calculation is performed on the operands.

Table 1.5 Bitwise Operators

Name Symbol Description

Binary AND
&

Copies a bit to the evaluated result if it exists in both

operands

23

Name Symbol Description

Binary OR
|

Copies a bit to the evaluated result if it exists in any of the

operand

Binary XOR
^

Copies the bit to the evaluated result if it is present in either

of the operands but not both

Left Shift
<<

Shifts the value to left by the number of bits specified by the

right operand.

Right Shift
>>

Shifts the value to right by the number of bits specified by

the right operand.

One’s

Complement
~ Changes binary digits 1 to 0 and 0 to 1

Note: Only char and int data types can be used with Bitwise Operators.

Example:

#include <bits/stdc++.h>

using namespace std;

int main() {

 int a = 6, b = 4;

 // Binary AND operator

 cout << “a & b is “ << (a & b) << endl;

 // Binary OR operator

 cout << “a | b is “ << (a | b) << endl;

 // Binary XOR operator

 cout << “a ^ b is “ << (a ^ b) << endl;

 // Left Shift operator

 cout << “a<<1 is “ << (a << 1) << endl;

 // Right Shift operator

 cout << “a>>1 is “ << (a >> 1) << endl;

 // One’s Complement operator

 cout << “~(a) is “ << ~(a);

 return 0;

}

Output

a & b is 4

a | b is 6

24

a ^ b is 2

a<<1 is 12

a>>1 is 3

~(a) is -7

6. Assignment Operators

Assignment Operators are used to assign value to a variable. We assign the value of right

operand into left operand according to which assignment operator we use.

Table 1.6 Assignment Operators

Name Symbol Description

Assignment = Assigns the value on the right to the variable on the left.

Add and

Assignment +=
First add right operand value into left operand then assign

that value into left operand.

Subtract and

Assignment -=
First subtract right operand value into left operand then

assign that value into left operand.

Multiply and

Assignment *=
First multiply right operand value into left operand then

assign that value into left operand.

Divide and

Assignment /=
First divide right operand value into left operand then

assign that value into left operand.

Example:

#include <bits/stdc++.h>

using namespace std;

int main() {

 int a = 6, b = 4;

 // Assignment Operator.

 cout << "a = " << a << endl;

 // Add and Assignment Operator.

 cout << "a += b is " << (a += b) << endl;

 // Subtract and Assignment Operator.

 cout << "a -= b is " << (a -= b) << endl;

 // Multiply and Assignment Operator.

 cout << "a *= b is " << (a *= b) << endl;

 // Divide and Assignment Operator.

 cout << "a /= b is " << (a /= b);

 return 0;

}

25

Output

a = 6

a += b is 10

a -= b is 6

a *= b is 24

a /= b is 6

7. Ternary or Conditional Operators

Ternary or conditional operators returns the value, based on the condition.

Expression1 ? Expression2 : Expression3

The ternary operator ? determines the answer on the basis of the evaluation of Expression1. If

it is true, then Expression2 gets evaluated and is used as the answer for the expression.

If Expression1 is false, then Expression3 gets evaluated and is used as the answer for the

expression.

This operator takes three operands, therefore it is known as a Ternary Operator.

Example:

#include <bits/stdc++.h>

using namespace std;

int main() {

 int a = 3, b = 4;

 // Conditional Operator

 int result = (a < b) ? b : a;

 cout << "The greatest number is " << result;

 return 0;

}

Output

The greatest number is 4

Basic Input / Output in C++:

In C++, input and output are performed in the form of a sequence of bytes or more commonly

known as streams.

• Input Stream: If the direction of flow of bytes is from the device (for example,

Keyboard) to the main memory then this process is called input.

• Output Stream: If the direction of flow of bytes is opposite, i.e. from main

memory to device (display screen) then this process is called output.

All of these streams are defined inside the <iostream> header file which contains all the

standard input and output tools of C++. The two instances cout and cin of iostream class are

used very often for printing outputs and taking inputs respectively. These two are the most

basic methods of taking input and printing output in C++.

26

Standard Output Stream – cout:

The C++ cout is the instance of the ostream class used to produce output on the standard

output device which is usually the display screen. The data needed to be displayed on the

screen is inserted in the standard output stream (cout) using the insertion operator (<<).

Syntax

cout << value/variable;

Standard Input Stream – cin:

The C++ cin statement is the instance of the class istream and is used to read input from the

standard input device which is usually a keyboard. The extraction operator (>>) is used

along with the object cin for extracting the data from the input stream and store it in some

variable in the program.

Syntax

cin >> variable;

For example, if we want to ask user for his/her age, then we can use cin as shown:

#include <iostream>

using namespace std;

int main() {

 int age;

 // Output a label

 cout << "Enter your age:";

 // Taking input from user and store

 // it in variable

 cin >> age;

 // Output the entered age

 cout << "Age entered: " << age;

 return 0;

}

Input

Enter your age: 18 (18 entered by the user)

Output

Your age is: 18

Manipulators in C++:

Manipulators are helping functions that can modify the input or output stream. They can be

included in the I/O statement to alter the format parameters of a stream. They are defined inside

<iomanip> and some are also defined inside <iostream> header file.

For example, if we want to print the hexadecimal value of 100 then we can print it as:

cout << setbase(16) << 100

Types of Manipulators

There are various types of manipulators classified on the basis type of entity they manipulate:

• Output Stream Manipulators

• Input Stream MAnipulators

• Boolean Manipulators

• Alignment and Sign Manipulators

• Base Manipulators

27

1. Output Stream Manipulators

Output stream manipulators are used to control and format the output stream, such as setting

the width, precision, or alignment of printed data. They allow for a better presentation of output.

Following table lists some common output stream manipulators:

Table 1.7 Output stream manipulators

Manipulator Description Header File

endl Inserts a newline and flushes the output stream. iostream

flush Flushes the output stream manually. iostream

setw(x) Sets the width of the next output field to x. iomanip

setprecision(x) Sets the precision for floating-point numbers to x. iomanip

fixed Displays numbers in fixed-point notation. iomanip

scientific Displays numbers in scientific notation. iomanip

showpoint Forces the display of the decimal point. iomanip

noshowpoint Hides the decimal point unless necessary. iomanip

Example

#include <iostream>

#include <iomanip>

using namespace std;

int main() {

 // Output a new line and flush the stream

 cout << "Hello" << endl;

 // Set width to 10 for the next output

 cout << setw(10) << 42 << endl;

 // Set precision to 3 for floating-point numbers

 cout << setprecision(3) << 3.14159 << endl;

 // Use fixed-point notation

 cout << fixed << 3.14159 << endl;

 // Use scientific notation

 cout << scientific << 3.14159 << endl;

28

 // Show the decimal point even for whole numbers

 cout << showpoint << 42.0;

 return 0;

}

Output

Hello

 42

3.14

3.142

3.142e+00

4.200e+01

2. Input Stream Manipulators

Input stream manipulators are used to modify the behaviour of the input stream. They help

in processing input efficiently, such as skipping unnecessary whitespaces with ws.

Following table lists some common input stream manipulators:

Table 1.8 Input stream manipulators

Manipulator Description Header File

ws Skips leading whitespaces in the input stream. iostream

noskipws Disables skipping of leading whitespaces. iostream

Example

#include <iostream>

using namespace std;

int main() {

 char c1, c2;

 // Input skips whitespace by default

 cin >> c1;

 // Input the next character without skipping whitespace

 cin >> noskipws >> c2;

 cout << "c1: " << c1 << ", c2: " << c2;

 return 0;

}

Input

 s x

Output

c1: s, c2:

29

3. Boolean Manipulators

Boolean manipulators are used to format boolean values in output. They allow displaying

boolean values as true or false or as 1 and 0, depending on the requirement.

Following table lists some common boolean manipulators:

Table 1.9 Boolean manipulators

Manipulator Description Header File

boolalpha Displays true or false for boolean values. iostream

noboolalpha Displays 1 or 0 for boolean values. iostream

Example

#include <iostream>

using namespace std;

int main() {

 bool value = true;

 // Display boolean as true/false

 cout << boolalpha << value << endl;

 // Display boolean as 1/0

 cout << noboolalpha << value;

 return 0;

}

Output

true

1

4. Alignment and Sign Manipulators

These manipulators control how text and numbers are aligned or how their signs are displayed

in the output.

Following table lists some common alignment and sign manipulators:

Table 1.10 Alignment and Sign manipulators

Manipulator Description Header File

left Aligns output to the left. Iomanip

right Aligns output to the right. Iomanip

internal Aligns signs and base prefixes to the left. Iomanip

30

Manipulator Description Header File

showpos Displays a + sign for positive numbers. Iostream

noshowpos Hides the + sign for positive numbers. Iostream

Example

#include <iostream>

#include <iomanip>

using namespace std;

int main() {

 int n = 42;

 // Align output to the left

 cout << left << setw(10) << n << endl;

 // Align output to the right

 cout << right << setw(10) << n << endl;

 // Show positive sign for numbers

 cout << showpos << n << endl;

 // Don’t show positive sign for numbers

 cout << noshowpos << n;

 return 0;

}

Output

42

 42

+42

42

4. Base Manipulators

Base manipulators are used to format numbers in different bases, such as decimal, hexadecimal,

or octal. They help in representing numbers in a way suited to specific applications.

Following table lists some common base manipulators:

Table 1.11 Base manipulators

Manipulator Description Header File

hex Formats output in hexadecimal base. iostream

dec Formats output in decimal base. iostream

31

Manipulator Description Header File

oct Formats output in octal base. iostream

Example

#include <iostream>

using namespace std;

int main() {

 int n = 42;

 // Output in hexadecimal base

 cout << hex << n << endl;

 // Output in decimal base

 cout << dec << n << endl;

 // Output in octal base

 cout << oct << n;

 return 0;

}

Output

2a

42

52

32

2. DECISION MAKING

Decision Making in C/C++ (if , if..else, Nested if, if-else-if):

The conditional statements (also known as decision control structures) such as if, if else,

switch, etc. are used for decision-making purposes in C/C++ programs.

They are also known as Decision-Making Statements and are used to evaluate one or more

conditions and make the decision whether to execute a set of statements or not. These decision-

making statements in programming languages decide the direction of the flow of program

execution.

Need of Conditional Statements:

There come situations in real life when we need to make some decisions and based on these

decisions, we decide what should we do next. Similar situations arise in programming also

where we need to make some decisions and based on these decisions we will execute the next

block of code. For example, in C/C++ if x occurs then execute y else execute z. There can also

be multiple conditions like in C/C++ if x occurs then execute p, else if condition y occurs

execute q, else execute r. This condition of C/C++ else-if is one of the many ways of importing

multiple conditions.

Types of Conditional Statements in C/C++:

1. if Statement

2. if-else Statement

3. Nested if Statement

4. if-else-if Ladder

5. switch Statement

6. Jump Statements:

• break

• continue

• goto

1. if statement

The if statement is the simplest decision-making statement. It is used to decide whether a

certain statement or block of statements will be executed or not i.e., if a certain condition is

true then a block of statements is executed otherwise not.

Syntax of if Statement

if(condition)

{

 //Statements to execute if

 // condition is true

}

Here, the condition after evaluation will be either true or false. C/C++ if statement accepts

boolean values – if the value is true then it will execute the block of statements below it

otherwise not. If we do not provide the curly braces ‘{‘ and ‘}’ after if(condition) then by

default if statement will consider the first immediately below statement to be inside its block.

33

Figure 2.1: Flow Diagram of if Statement

Example of if statement

// C program to illustrate If statement

#include <stdio.h>

int main()

{

 int i = 10;

 if (i > 15) {

 printf("10 is greater than 15");

 }

 printf("I am Not in if");

}

Output

I am Not in if

As the condition present in the if statement is false. So, the block below the if statement is not

executed.

2. if-else statement

The if statement alone tells us that if a condition is true it will execute a block of statements

and if the condition is false it won’t. But what if we want to do something else when the

condition is false? Here comes the C/C++ else statement. We can use the else statement with

the if statement to execute a block of code when the condition is false. The if-else consists of

two blocks, one for false expression and one for true expression.

Syntax of if else in C

if(condition)

{

 // Executes this block if

 // condition is true

}

else

{

 // Executes this block if

34

 // condition is false

}

Fig. 2.2: Flow Diagram of if else

Example of if-else

// C program to illustrate If statement

#include <stdio.h>

int main()

{

 int i = 20;

 if (i < 15) {

 printf("i is smaller than 15");

 }

 else {

 printf("i is greater than 15");

 }

 return 0;

}

Output

i is greater than 15

The block of code following the else statement is executed as the condition present in

the if statement is false.

3. Nested if-else statement

A nested if in C/C++ is an if statement that is the target of another if statement. Nested if

statements mean an if statement inside another if statement. Yes, C/C++ allow us to nested if

statements within if statements, i.e, we can place an if statement inside another if statement.

Syntax of Nested if-else

35

if(condition1)

{

 //Executes when condition1 is true

 if(condition_2)

 {

 //statement1

 }

 else

 {

 //Statement2

 }

}

else

{

 if(condition_3)

 {

 //statement3

 }

 else

 {

 //Statement4

 }

}

Example of Nested if-else

// C program to illustrate nested-if statement

#include <stdio.h>

int main()

{

 int i = 10;

 if (i == 10) {

 // First if statement

 if (i < 15)

 printf("i is smaller than 15\n");

 // Nested - if statement

 // Will only be executed if statement above

 // is true

 if (i < 12)

 printf("i is smaller than 12 too\n");

 else

 printf("i is greater than 15");

 }

 else {

 if (i == 20) {

 // Nested - if statement

 // Will only be executed if statement above

 // is true

 if (i < 22)

36

 printf("i is smaller than 22 too\n");

 else

 printf("i is greater than 25");

 }

 }

 return 0;

}

Output

i is smaller than 15

i is smaller than 12 too

4. if-else-if Ladder in C/C++

The if-else-if statements are used when the user has to decide among multiple options. The

C/C++ if statements are executed from the top down. As soon as one of the conditions

controlling the if is true, the statement associated with that if is executed, and the rest of the

C/C++ else-if ladder is bypassed. If none of the conditions is true, then the final else statement

will be executed. if-else-if ladder is similar to the switch statement.

Syntax of if-else-if Ladder

if(condition)

 statement;

else if (condition)

 statement;

.

.

else

 statement;

Fig 2.3: Flow Diagram of if-else-if

Example of if-else-if Ladder

// C program to illustrate nested-if statement

#include <stdio.h>

37

int main()

{

 int i = 20;

 if (i == 10)

 printf("i is 10");

 else if (i == 15)

 printf("i is 15");

 else if (i == 20)

 printf("i is 20");

 else

 printf("i is not present");

}

Output

i is 20

5. switch Statement in C/C++

The switch case statement is an alternative to the if else if ladder that can be used to execute

the conditional code based on the value of the variable specified in the switch statement. The

switch block consists of cases to be executed based on the value of the switch variable.

Syntax of switch

switch(expression)

{

 case value1:

 statements;

 case value2:

 statements;

 default:

 statements;

}

Note: The switch expression should evaluate to either integer or character. It cannot evaluate

any other data type.

38

Fig 2.4: Flowchart of switch in C

Example of switch Statement

// C Program to illustrate the use of switch statement

#include <stdio.h>

int main()

{

 // variable to be used in switch statement

 int var = 2;

 // declaring switch cases

 switch (var) {

 case 1:

 printf("Case 1 is executed");

 break;

 case 2:

 printf("Case 2 is executed");

 break;

 default:

 printf("Default Case is executed");

 break;

 }

 return 0;

}

Output

Case 2 is executed

39

0: -25

6. Jump Statements in C/C++

These statements are used in C/C++ for the unconditional flow of control throughout the

functions in a program. They support four types of jump statements:

A) break

This loop control statement is used to terminate the loop. As soon as the break statement is

encountered from within a loop, the loop iterations stop there, and control returns from the loop

immediately to the first statement after the loop.

Syntax of break

break;

Basically, break statements are used in situations when we are not sure about the actual number

of iterations for the loop or we want to terminate the loop based on some condition.

Fig 2.5 flowchart for break statement

Example of break

// C program to illustrate

// to show usage of break

// statement

#include <stdio.h>

void findElement(int arr[], int size, int key)

{

 // loop to traverse array and search for key

 for (int i = 0; i < size; i++) {

 if (arr[i] == key) {

 printf("Element found at position: %d", (i + 1));

 break;

 }

https://www.geeksforgeeks.org/c-break-statement/

40

 }

}

int main()

{

 int arr[] = { 1, 2, 3, 4, 5, 6 };

 // no of elements

 int n = 6;

 // key to be searched

 int key = 3;

 // Calling function to find the key

 findElement(arr, n, key);

 return 0;

}

Output

Element found at position: 3

B) continue

This loop control statement is just like the break statement. The continue statement is opposite

to that of the break statement, instead of terminating the loop, it forces to execute the next

iteration of the loop.

As the name suggests the continue statement forces the loop to continue or execute the next

iteration. When the continue statement is executed in the loop, the code inside the loop

following the continue statement will be skipped and the next iteration of the loop will begin.

Syntax of continue

continue;

Example of continue

// C program to explain the use

// of continue statement

#include <stdio.h>

int main()

{

 // loop from 1 to 10

 for (int i = 1; i <= 10; i++) {

 // If i is equals to 6,

 // continue to next iteration

 // without printing

 if (i == 6)

 continue;

 else

 // otherwise print the value of i

 printf("%d ", i);

 }

 return 0;

}

Output

41

1 2 3 4 5 7 8 9 10

If you create a variable in if-else in C/C++, it will be local to that if/else block only. You can

use global variables inside the if/else block. If the name of the variable you created in if/else is

as same as any global variable then priority will be given to the `local variable`.

#include <stdio.h>

int main()

{

 int gfg = 0; // local variable for main

 printf("Before if-else block %d\n", gfg);

 if (1) {

 int gfg = 100; // new local variable of if block

 printf("if block %d\n", gfg);

 }

 printf("After if block %d", gfg);

 return 0;

}

Output

Before if-else block 0

if block 100

After if block 0

C) goto

The goto statement in C/C++ also referred to as the unconditional jump statement can be used

to jump from one point to another within a function.

Examples of goto

// C program to print numbers

// from 1 to 10 using goto

// statement

#include <stdio.h>

// function to print numbers from 1 to 10

void printNumbers()

{

 int n = 1;

label:

 printf("%d ", n);

 n++;

 if (n <= 10)

 goto label;

}

// Driver program to test above function

int main()

{

 printNumbers();

 return 0;

}

42

Output

1 2 3 4 5 6 7 8 9 10

C++ Loops:

In C++ programming, sometimes there is a need to perform some operation more than

once or (say) n number of times. For example, suppose we want to print “Hello World” 5

times. Manually, we have to write cout for the C++ statement 5 times as shown.

#include <iostream>

using namespace std;

int main() {

 // Print hello world 5 times

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 return 0;

}

Output

Hello World

Hello World

Hello World

Hello World

Hello World

Let’s say you have to write it 20 times (it would surely take more time to write 20 statements)

now imagine you have to write it 100 times, it would be really hectic to re-write the same

statement again and again. In this case, loops come into use allowing users to repeatedly

execute a block of statements.

#include <iostream>

using namespace std;

int main() {

 for (int i = 0; i < 5; i++) {

 cout << "Hello World\n";

 }

 return 0;

}

Output

Hello World

Hello World

43

Hello World

Hello World

Hello World

What are Loops?

In C++ programming, a loop is an instruction that is used to repeatedly execute a code until

a certain condition is reached. They are useful for performing repetitive tasks without having

to write the same code multiple times.

Loops can be classified on the basis of the sequency in which they check the condition

relative to the execution of the associated block of code.

1. Entry Controlled loops: In this type of loop, the test condition is tested before

entering the loop body.

2. Exit Controlled Loops: In this type of loop, the test condition is tested or

evaluated at the end of the loop body. Therefore, the loop body will execute at

least once, irrespective of whether the test condition is true or false.

C++ provides three loops:

• for Loop

• while Loop

• do-while Loop

Let’s understand each of them in detail.

for Loop:

A for loop is a repetition control structure that allows us to write a loop that is executed a

specific number of times. It is an entry-controlled loop that enables us to perform n number

of steps together in one line.

Syntax

for (initialization; condition; updation) {

// body of for loop

}

The various parts of the for loop are:

• Initialization: Initialize the loop variable to some initial value.

• Test Condition: This specifies the test condition. If the condition evaluates to

true, then body of the loop is executed, and loop variable is updated according to

update expression. If evaluated false, loop is terminated.

• Update Expression: After executing the loop body, this expression

increments/decrements the loop variable by some value.

Example

#include <iostream>

using namespace std;

int main() {

 // For loop that starts with i = 1 and ends

 // when i is greater than 5.

 for (int i = 1; i <= 5; i++) {

 cout << i << " ";

 }

 return 0;

}

44

Output

1 2 3 4 5

Important Properties of for Loop

• The initialization and updation statements can perform operations unrelated to

the condition statement, or nothing at all – if you wish to do. But the good practice

is to only perform operations directly relevant to the loop.

• A variable declared in the initialization statement is visible only inside the scope

of the for loop and will be released out of the loop.

• Don’t forget that the variable which was declared in the initialization statement

can be modified during the loop, as well as the variable checked in the condition.

while Loop:

While studying for loop, we have seen that the number of iterations is known beforehand,

i.e. the number of times the loop body is needed to be executed is known to us. while Loop is

used in situations where we do not know the exact number of iterations of the loop

beforehand. It is an entry-controlled loop whose execution is terminated on the basis of the

test conditions.

Syntax

while (condition) {

// Body of the loop

update expression

}

Example

#include <iostream>

using namespace std;

int main() {

 // Initialization

 int i = 1;

 // while loop that starts with i = 1 and ends

 // when i is greater than 5.

 while (i <= 5) {

 cout << i << " ";

 // Updation

 i++;

 }

 return 0;

}

Output

1 2 3 4 5

do-while Loop:

45

The do-while Loop is also a loop whose execution is terminated on the basis of test

conditions. The main difference between a do-while loop and the while loop is in the do-

while loop the condition is tested at the end of the loop body, i.e. do-while loop is exit

controlled whereas the other two loops are entry-controlled loops. So, in a do-while loop, the

loop body will execute at least once irrespective of the test condition.

Syntax

do {

// Body of the loop

// Update expression

} while (condition);

Example

#include <iostream>

using namespace std;

int main() {

 // Initialization

 int i = 1;

 // while loop that starts with i = 1 and ends

 // when i is greater than 5.

 do {

 cout << i << " ";

 // Updation

 i++;

 }while (i <= 5);

 return 0;

}

Output

1 2 3 4 5

Remember the last semicolon at the end of the loop.

46

3. STRUCTURES AND FUNCTIONS
Functions in C++:

A function is a set of statements that takes input, does some specific computation, and

produces output. The idea is to put some commonly or repeatedly done tasks together to make

a function so that instead of writing the same code again and again for different inputs, we

can call this function.

In simple terms, a function is a block of code that runs only when it is called.

Syntax:

Example:

// C++ Program to demonstrate working of a function

#include <iostream>

using namespace std;

// Following function that takes two parameters 'x' and 'y'

// as input and returns max of two input numbers

int max(int x, int y)

{

 if (x > y)

 return x;

 else

 return y;

}

// main function that doesn't receive any parameter and

// returns integer

int main()

{

 int a = 10, b = 20;

 // Calling above function to find max of 'a' and 'b'

 int m = max(a, b);

 cout << "m is " << m;

 return 0;

}

Output

m is 20

Why Do We Need Functions?

• Functions help us in reducing code redundancy. If functionality is performed at

multiple places in software, then rather than writing the same code, again and

47

again, we create a function and call it everywhere. This also helps in maintenance

as we have to make changes in only one place if we make changes to the

functionality in future.

• Functions make code modular. Consider a big file having many lines of code. It

becomes really simple to read and use the code, if the code is divided into

functions.

• Functions provide abstraction. For example, we can use library functions

without worrying about their internal work.

Function Declaration:

A function declaration tells the compiler about the number of parameters, data types of

parameters, and returns type of function. Writing parameter names in the function declaration

is optional but it is necessary to put them in the definition. Below is an example of function

declarations. (parameter names are not present in the below declarations).

Example:

// C++ Program to show function that takes

// two integers as parameters and returns

// an integer

int max(int, int);

// A function that takes an int

// pointer and an int variable

// as parameters and returns

// a pointer of type int

int* swap(int*, int);

Types of Functions:

User Defined Function

User-defined functions are user/customer-defined blocks of code specially customized to

reduce the complexity of big programs. They are also commonly known as “tailor-made

functions” which are built only to satisfy the condition in which the user is facing issues

meanwhile reducing the complexity of the whole program.

Library Function

Library functions are also called “built-in Functions“. These functions are part of a compiler

package that is already defined and consists of a special function with special and different

meanings. Built-in Function gives us an edge as we can directly use them without defining

them whereas in the user-defined function we have to declare and define a function before

using them.

For Example: sqrt(), setw(), strcat(), etc.

Parameter Passing to Functions:

The parameters passed to the function are called actual parameters. For example, in the

program below, 5 and 10 are actual parameters.

48

The parameters received by the function are called formal parameters. For example, in the

above program x and y are formal parameters.

There are two most popular ways to pass parameters:

1. Pass by Value: In this parameter passing method, values of actual parameters

are copied to the function’s formal parameters. The actual and formal parameters

are stored in different memory locations, so any changes made in the functions

are not reflected in the actual parameters of the caller.

2. Pass by Reference: Both actual and formal parameters refer to the same

locations, so any changes made inside the function are reflected in the actual

parameters of the caller.

Function Definition:

Pass by value is used where the value of x is not modified using the function fun().

// C++ Program to demonstrate function definition

#include <iostream>

using namespace std;

void fun(int x)

{

 // definition of

 // function

 x = 30;

}

int main()

{

 int x = 20;

 fun(x);

 cout << "x = " << x;

 return 0;

}

Output

x = 20

49

Functions Using Pointers:

The function fun() expects a pointer ptr to an integer (or an address of an integer). It modifies

the value at the address ptr. The dereference operator * is used to access the value at an

address. In the statement ‘*ptr = 30’, the value at address ptr is changed to 30. The address

operator & is used to get the address of a variable of any data type. In the function call

statement ‘fun(&x)’, the address of x is passed so that x can be modified using its address.

// C++ Program to demonstrate working of

// function using pointers

#include <iostream>

using namespace std;

void fun(int* ptr) { *ptr = 30; }

int main()

{

 int x = 20;

 fun(&x);

 cout << "x = " << x;

 return 0;

}

Output

x = 30

Table 3.1 Difference between call by value and call by reference in C++

Call by value Call by reference

A copy of the value is passed to

the function
An address of value is passed to the function

Changes made inside the

function are not

reflected on other functions

Changes made inside the function are

reflected outside the function as well

Actual and formal arguments

will be created at

different memory location

Actual and formal arguments will be created at

same memory location.

Points to Remember About Functions in C++

1. Most C++ program has a function called main() that is called by the operating system when

a user runs the program.

2. Every function has a return type. If a function doesn’t return any value, then void is used

as a return type. Moreover, if the return type of the function is void, we still can use the return

statement in the body of the function definition by not specifying any constant, variable, etc.

50

with it, by only mentioning the ‘return;’ statement which would symbolize the termination

of the function as shown below:

void function name(int a)

{

 // Function Body

 return; // Function execution would get terminated

}

3. To declare a function that can only be called without any parameter, we should use “void

fun(void)”. As a side note, in C++, an empty list means a function can only be called without

any parameter. In C++, both void fun() and void fun(void) are same.

Main Function :

The main function is a special function. Every C++ program must contain a function named

main. It serves as the entry point for the program. The computer will start running the code

from the beginning of the main function.

Since the main function has the return type of int, the programmer must always have a return

statement in the code. The number that is returned is used to inform the calling program what

the result of the program’s execution was. Returning 0 signals that there were no problems.

Recursion:

When function is called within the same function, it is known as recursion in C++. The

function which calls the same function, is known as recursive function.

#include <iostream>

using namespace std;

void directRecursion(int n) {

 if (n > 0) {

 cout << n << " ";

 directRecursion(n - 1); // Function calls itself

 }

}

int main() {

 directRecursion(10);

 return 0;

}

Output

5 4 3 2 1

Types of overloading in C++ are:

• Function overloading

• Operator overloading

Function Overloading

Function Overloading is defined as the process of having two or more functions with the

same name, but different parameters. In function overloading, the function is redefined by

using either different types or number of arguments. It is only through these differences a

compiler can differentiate between the functions.

51

The advantage of Function overloading is that it increases the readability of the program

because you don’t need to use different names for the same action.

Example: changing number of arguments of add() method

// program of function overloading when number of arguments

// vary

#include <iostream>

using namespace std;

class Cal {

public:

 static int add(int a, int b) { return a + b; }

 static int add(int a, int b, int c)

 {

 return a + b + c;

 }

};

int main(void)

{

 Cal C; // class object declaration.

 cout << C.add(10, 20) << endl;

 cout << C.add(12, 20, 23);

 return 0;

}

Output

30

55

Example: when the type of the arguments varies.

// Program of function overloading with different types of

// arguments.

#include <iostream>

using namespace std;

int mul(int, int);

float mul(float, int);

int mul(int a, int b) { return a * b; }

float mul(double x, int y) { return x * y; }

int main()

{

 int r1 = mul(6, 7);

 float r2 = mul(0.2, 3);

 cout << "r1 is : " << r1 << endl;

 cout << "r2 is : " << r2 << endl;

 return 0;

}

Output

r1 is : 42

52

r2 is : 0.6

Structures, Unions and Enumerations in C++:

Structures, unions and enumerations (enums) are 3 user defined data types in C++. User

defined data types allow us to create a data type specifically tailored for a particular purpose.

It is generally created from the built-in or derived data types. Let’s take a look at each of

them one by one.

Structure:

In C++, strcuture is a user-defined data type that is used to combine data of different types.

It is similar to an array but unlike an array, which stores elements of the same type, a structure

can store elements of different data types. C++ structures can also have member functions to

manipulate its data.

Create Structure

A structure has to be defined before being usable in the program. It is defined

using struct keyword.

struct structure_name{

 type1 member1;

 type2 member2;

 .

 .

 typeN memberN;

};

This definition does not allocate any memory to the structure. We have to crate structure

variables separately to use it.

structure_name var_name;

We can also assign some values to the members:

struct structure_name = {val1, val2, ..., valN};

Access and Update

Structure members can be accessed using the dot operator(.)

struct structure_name;

// Accessing first member

structure_name.member1;

// Accessing second member

structure_name.member2;

// Accessing third member

structure_name.member3;

Example

 {...}

// Define structure

struct GFG {

 int G1;

 char G2;

 float G3;

};

int main() {

 // Create object of structure

 GFG Geek = {85, 'G', 989.45};

53

 // Accessing structure members values

 cout << Geek.G1 << endl;

 cout << Geek.G2 << endl;

 cout << Geek.G3;

 {...}

Output

85

G

989.45

Explanation: In the above code, values: (85, ‘G’, 989.45) are assigned to the G1, G2,

and G3 member variables of the structure GFG, and these values are printed at the end using

dot (.) operator.

Union:

In C++, union is a user-defined datatype in which we can define members of different types

of data types just like structures but unlike a structure, where each member has its own

memory, a union member shares the same memory location.

Create Union

Union is first defined using union keyword:

union union_name{

 type1 member1;

 type2 member2;

 .

 .

 typeN memberN;

};

Then we can create union variables:

union_name var_name;

Access and Update

Only one member of a union stores memory at one time.

var_name.member1 = val

Example

 {...}

// Defining a Union

union GFG {

 int G1;

 char G2;

 float G3;

};

int main() {

 // Create an object of GFG union

 GFG Geek;

 // Assign union's member variables

 Geek.G1 = 85;

 // Accessing union members values

54

 cout << Geek.G1 << endl;

 Geek.G2 = 'G';

 cout << Geek.G2 << endl;

 Geek.G3 = 989.45;

 cout << Geek.G3;

 {...}

Output

85

G

989.45

Enumeration:

In C++, enumeration (enum) is a user-defined type that consists of a set of named integral

constants. Enumerations help make the code more readable and easier to maintain by

assigning meaningful names to constants.

Create Enums

Just like all other user defined data types, enums also needs to be defined before we can use

it.

enum enum_name {

 value1, value2, value3…..valueN

};

Once defined, it can be used in the C++ program.

enum_name var_name = value

This value should be taken from the defined value.

Example

 {...}

 // Defining enum Gender

 enum GFG { Male, Female, };

 // Creating GFG type variable and assigning

 // value

 GFG Geek = Male;

 switch (Geek) {

 case Male:

 cout << "Who is he?";

 break;

 case Geek2:

 Female << "Who is she?";

 break;

 default:

 cout << "Who is they?";

 }

 {...}

Output

Belongs to GFG

55

4. CLASSES AND OBJECTS

C++ Classes and Objects:

In C++, classes and objects are the basic building block that leads to Object-Oriented

programming in C++.

A class is a user-defined data type, which holds its own data members and member functions,

which can be accessed and used by creating an instance of that class. A C++ class is like a

blueprint for an object.

For Example: Consider the Class of Cars. There may be many cars with different names and

brands but all of them will share some common properties like all of them will have 4

wheels, Speed Limit, Mileage range, etc. So here, the Car is the class, and wheels, speed limits,

and mileage are their properties.

• A Class is a user-defined data type that has data members and member functions.

• Data members are the data variables and member functions are the functions used

to manipulate these variables together, these data members and member functions

define the properties and behaviour of the objects in a Class.

• In the above example of class Car, the data member will be speed

limit, mileage, etc, and member functions can be applying brakes, increasing

speed, etc.

But we cannot use the class as it is. We first have to create an object of the class to use its

features. An Object is an instance of a Class.

Note: When a class is defined, no memory is allocated but when it is instantiated (i.e. an object

is created) memory is allocated.

Defining Class in C++

A class is defined in C++ using the keyword class followed by the name of the class. The

following is the syntax:

class ClassName {

 access_specifier:

 // Body of the class

};

Here, the access specifier defines the level of access to the class’s data members.

Example

class ThisClass {

 public:

 int var; // data member

 void print() { // member method

 cout << "Hello";

 }

};

56

What is an Object in C++?

When a class is defined, only the specification for the object is defined; no memory or storage

is allocated. To use the data and access functions defined in the class, you need to create objects.

Syntax to Create an Object

We can create an object of the given class in the same way we declare the variables of any

other inbuilt data type.

ClassName ObjectName;

Example

MyClass obj;

In the above statement, the object of MyClass with name obj is created.

Accessing Data Members and Member Functions

The data members and member functions of the class can be accessed using the dot(‘.’) operator

with the object. For example, if the name of the object is obj and you want to access the member

function with the name printName() then you will have to write:

obj.printName()

Example of Class and Object in C++

The below program shows how to define a simple class and how to create an object of it.

// C++ program to illustrate how create a simple class and

// object

#include <iostream>

#include <string>

using namespace std;

// Define a class named 'Person'

class Person {

public:

 // Data members

 string name;

 int age;

 // Member function to introduce the person

 void introduce()

 {

 cout << "Hi, my name is " << name << " and I am "

 << age << " years old." << endl;

 }

};

57

int main()

{

 // Create an object of the Person class

 Person person1;

 // accessing data members

 person1.name = "Alice";

 person1.age = 30;

 // Call the introduce member method

 person1.introduce();

 return 0;

}

Output

Hi, my name is Alice and I am 30 years old.

Access Modifiers:

In C++ classes, we can control the access to the members of the class using Access Specifiers.

Also known as access modifier, they are the keywords that are specified in the class and all the

members of the class under that access specifier will have particular access level.

In C++, there are 3 access specifiers that are as follows:

1. Public: Members declared as public can be accessed from outside the class.

2. Private: Members declared as private can only be accessed within the class itself.

3. Protected: Members declared as protected can be accessed within the class and

by derived classes.

If we do not specify the access specifier, the private specifier is applied to every member by

default.

Example of Access Specifiers

// C++ program to demonstrate accessing of data members

#include <bits/stdc++.h>

using namespace std;

class Geeks {

private:

 string geekname;

 // Access specifier

public:

 // Member Functions()

 void setName(string name) { geekname = name; }

 void printname() { cout << "Geekname is:" << geekname; }

};

int main()

{

 // Declare an object of class geeks

 Geeks obj1;

 // accessing data member

 // cannot do it like: obj1.geekname = "Abhi";

 obj1.setName("Abhi");

 // accessing member function

 obj1.printname();

 return 0;

58

}

Output

Geekname is:Abhi

In the above example, we cannot access the data member geekname outside the class. If we try

to access it in the main function using dot operator, obj1.geekname, then program will throw

an error.

Member Function in C++ Classes

There are 2 ways to define a member function:

• Inside class definition

• Outside class definition

Till now, we have defined the member function inside the class, but we can also define the

member function outside the class. To define a member function outside the class definition,

• We have to first declare the function prototype in the class definition.

• Then we have to use the scope resolution operator (::) along with the class name

and function name.

Example

// C++ program to demonstrate member function

// definition outside class

#include <bits/stdc++.h>

using namespace std;

class Geeks {

public:

 string geekname;

 int id;

 // printname is not defined inside class definition

 void printname();

 // printid is defined inside class definition

 void printid() { cout << "Geek id is: " << id; }

};

// Definition of printname using scope resolution operator

// ::

void Geeks :: printname()

{

 cout << "Geekname is: " << geekname;

}

int main()

{

 Geeks obj1;

 obj1.geekname = "xyz";

 obj1.id = 15;

 // call printname()

 obj1.printname();

 cout << endl;

 // call printid()

 obj1.printid();

59

 return 0;

}

Output

Geekname is: xyz

Geek id is: 15

Note that all the member functions defined inside the class definition are by default inline, but

you can also make any non-class function inline by using the keyword inline with them. Inline

functions are actual functions, which are copied everywhere during compilation, like pre-

processor macro, so the overhead of function calls is reduced.

Note: Declaring a friend function is a way to give private access to a non-member function.

Constructors:

Constructors are special class members which are called by the compiler every time an object

of that class is instantiated. Constructors have the same name as the class and may be defined

inside or outside the class definition.

There are 4 types of constructors in C++ classes:

• Default Constructors: The constructor that takes no argument is called default

constructor.

• Parameterized Constructors: This type of constructor takes the arguments to

initialize the data members.

• Copy Constructors: Copy constructor creates the object from an already existing

object by copying it.

Example of Constructor

// C++ program to demonstrate constructors

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 public:

 int id;

 //Default Constructor

 Geeks()

 {

 cout << "Default Constructor called" << endl;

 id=-1;

 }

 //Parameterized Constructor

 Geeks(int x)

 {

 cout <<"Parameterized Constructor called "<< endl;

 id=x;

 }

};

int main() {

 // obj1 will call Default Constructor

https://www.geeksforgeeks.org/constructors-c/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/

60

 Geeks obj1;

 cout <<"Geek id is: "<<obj1.id << endl;

 // obj2 will call Parameterized Constructor

 Geeks obj2(21);

 cout <<"Geek id is: " <<obj2.id << endl;

 return 0;

}

Output

Default Constructor called

Geek id is: -1

Parameterized Constructor called

Geek id is: 21

Note: If the programmer does not define the constructor, the compiler automatically creates

the default, copy constructor.

Destructors:

Destructor is another special member function that is called by the compiler when the scope of

the object ends. It deallocates all the memory previously used by the object of the class so that

there will be no memory leaks. The destructor also have the same name as the class but with

tilde(~) as prefix.

Example of Destructor

// C++ program to explain destructors

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 public:

 int id;

 //Definition for Destructor

 ~Geeks()

 {

 cout << "Destructor called for id: " << id <<endl;

 }

};

int main()

 {

 Geeks obj1;

 obj1.id=7;

 int i = 0;

 while (i < 5)

 {

 Geeks obj2;

 obj2.id=i;

 i++;

 } // Scope for obj2 ends here

61

 return 0;

 } // Scope for obj1 ends here

Output

Destructor called for id: 0

Destructor called for id: 1

Destructor called for id: 2

Destructor called for id: 3

Destructor called for id: 4

Destructor called for id: 7

62

UNIT-2

5. MEMBER FUNCTIONS

6.
Access Modifiers in C++:

Access modifiers are used to implement an important aspect of Object-Oriented Programming

known as Data Hiding. Consider a real-life example:

The Research and Analysis Wing (R&AW), having 10 core members, has come into possession

of sensitive confidential information regarding national security. Now we can correlate these

core members to data members or member functions of a class, which in turn can be correlated

to the R&A Wing. These 10 members can directly access the confidential information from

their wing (the class), but anyone apart from these 10 members can’t access this information

directly, i.e., outside functions other than those prevalent in the class itself can’t access the

information (that is not entitled to them) without having either assigned privileges (such as

those possessed by a friend class or an inherited class) or access to one of these 10 members

who is allowed direct access to the confidential information (similar to how private members

of a class can be accessed in the outside world through public member functions of the class

that have direct access to private members). This is what data hiding is in practice.

Access Modifiers or Access Specifiers in a class are used to assign the accessibility to the class

members, i.e., they set some restrictions on the class members so that they can’t be directly

accessed by the outside functions.

There are 3 types of access modifiers available in C++:

1. Public

2. Private

3. Protected

Note: If we do not specify any access modifiers for the members inside the class, then by

default the access modifier for the members will be Private. Understanding how to use public,

private, and protected access modifiers is essential.

Let us now look at each one of these access modifiers in detail:

 1. Public: All the class members declared under the public specifier will be available to

everyone. The data members and member functions declared as public can be accessed by other

classes and functions too. The public members of a class can be accessed from anywhere in the

program using the direct member access operator (.) with the object of that class.

Example:

// C++ program to demonstrate public

// access modifier

#include<iostream>

using namespace std;

// class definition

class Circle

{

 public:

 double radius;

 double compute_area()

 {

 return 3.14*radius*radius;

63

 }

};

// main function

int main()

{

 Circle obj;

 // accessing public datamember outside class

 obj.radius = 5.5;

 cout << "Radius is: " << obj.radius << "\n";

 cout << "Area is: " << obj.compute_area();

 return 0;

}

Output:

Radius is: 5.5

Area is: 94.985

In the above program, the data member radius is declared as public so it could be accessed

outside the class and thus was allowed access from inside main().

 2. Private: The class members declared as private can be accessed only by the member

functions inside the class. They are not allowed to be accessed directly by any object or function

outside the class. Only the member functions or the friend function/friend class are allowed to

access the private data members of the class.

Example:

// C++ program to demonstrate private

// access modifier

#include<iostream>

using namespace std;

class Circle

{

 // private data member

 private:

 double radius;

 // public member function

 public:

 double compute_area()

 { // member function can access private

 // data member radius

 return 3.14*radius*radius;

 }

};

// main function

int main()

{

 // creating object of the class

 Circle obj;

 // trying to access private data member

 // directly outside the class

 obj.radius = 1.5;

64

 cout << "Area is:" << obj.compute_area();

 return 0;

}

Output:

 In function 'int main()':

11:16: error: 'double Circle::radius' is private

 double radius;

 ^

31:9: error: within this context

 obj.radius = 1.5;

 ^

The output of the above program is a compile time error because we are not allowed to access

the private data members of a class directly from outside the class. Yet an access to obj.radius

is attempted, but radius being a private data member, we obtained the above compilation error.

However, we can access the private data members of a class indirectly using the public member

functions of the class.

Example:

// C++ program to demonstrate private

// access modifier

#include<iostream>

using namespace std;

class Circle

{

 // private data member

 private:

 double radius;

 // public member function

 public:

 void compute_area(double r)

 { // member function can access private

 // data member radius

 radius = r;

 double area = 3.14*radius*radius;

 cout << "Radius is: " << radius << endl;

 cout << "Area is: " << area;

 }

};

// main function

int main()

{

 // creating object of the class

 Circle obj;

 // trying to access private data member

 // directly outside the class

 obj.compute_area(1.5);

 return 0;

65

}

Output:

Radius is: 1.5

Area is: 7.065

3. Protected: The protected access modifier is similar to the private access modifier in the

sense that it can’t be accessed outside of its class unless with the help of a friend class. The

difference is that the class members declared as Protected can be accessed by any subclass

(derived class) of that class as well.

Note: This access through inheritance can alter the access modifier of the elements of base

class in derived class depending on the mode of inheritance.

Example:

// C++ program to demonstrate

// protected access modifier

#include <bits/stdc++.h>

using namespace std;

// base class

class Parent

{

 // protected data members

 protected:

 int id_protected;

};

// sub class or derived class from public base class

class Child : public Parent

{

 public:

 void setId(int id)

 {

 // Child class is able to access the inherited

 // protected data members of base class

 id_protected = id;

 }

 void displayId()

 {

 cout << "id_protected is: " << id_protected << endl;

 }

};

// main function

int main() {

 Child obj1;

 // member function of the derived class can

 // access the protected data members of the base class

 obj1.setId(81);

 obj1.displayId();

 return 0;

66

}

Output:

id_protected is: 81

Friend Class and Function in C++:

A friend class can access private and protected members of other classes in which it is declared

as a friend. It is sometimes useful to allow a particular class to access private and protected

members of other classes. For example, a LinkedList class may be allowed to access private

members of Node.

We can declare a friend class in C++ by using the friend keyword.

Syntax:

friend class class_name; // declared in the base class

Example:

// C++ Program to demonstrate the

// functioning of a friend class

#include <iostream>

using namespace std;

class GFG {

private:

 int private_variable;

protected:

 int protected_variable;

public:

 GFG()

 {

 private_variable = 10;

 protected_variable = 99;

 }

 // friend class declaration

 friend class F;

};

// Here, class F is declared as a

// friend inside class GFG. Therefore,

// F is a friend of class GFG. Class F

// can access the private members of

// class GFG.

class F {

public:

 void display(GFG& t)

 {

 cout << "The value of Private Variable = "

 << t.private_variable << endl;

 cout << "The value of Protected Variable = "

 << t.protected_variable;

 }

67

};

// Driver code

int main()

{

 GFG g;

 F fri;

 fri.display(g);

 return 0;

}

Output

The value of Private Variable = 10

The value of Protected Variable = 99

Note: We can declare friend class or function anywhere in the base class body whether its

private, protected or public block. It works all the same.

Friend Function:

Like a friend class, a friend function can be granted special access to private and protected

members of a class in C++. They are not the member functions of the class but can access and

manipulate the private and protected members of that class for they are declared as friends.

A friend function can be:

1. A global function

2. A member function of another class

Syntax:

friend return_type function_name (arguments); // for a global function

 or

friend return_type class_name::function_name (arguments); // for a member function of

another class

1. Global Function as Friend Function

We can declare any global function as a friend function. The following example demonstrates

how to declare a global function as a friend function in C++:

Example:

// C++ program to create a global function as a friend

// function of some class

#include <iostream>

using namespace std;

class base {

private:

 int private_variable;

protected:

 int protected_variable;

public:

 base()

 {

 private_variable = 10;

 protected_variable = 99;

68

 }

 // friend function declaration

 friend void friendFunction(base& obj);

};

// friend function definition

void friendFunction(base& obj)

{

 cout << "Private Variable: " << obj.private_variable

 << endl;

 cout << "Protected Variable: " << obj.protected_variable;

}

// driver code

int main()

{

 base object1;

 friendFunction(object1);

 return 0;

}

Output

Private Variable: 10

Protected Variable: 99

In the above example, we have used a global function as a friend function. In the next example,

we will use a member function of another class as a friend function.

2. Member Function of Another Class as Friend Function

We can also declare a member function of another class as a friend function in C++. The

following example demonstrates how to use a member function of another class as a friend

function in C++:

Example:

// C++ program to create a member function of another class

// as a friend function

#include <iostream>

using namespace std;

class base; // forward definition needed

// another class in which function is declared

class anotherClass {

public:

 void memberFunction(base& obj);

};

// base class for which friend is declared

class base {

private:

 int private_variable;

protected:

 int protected_variable;

69

public:

 base()

 {

 private_variable = 10;

 protected_variable = 99;

 }

 // friend function declaration

 friend void anotherClass::memberFunction(base&);

};

// friend function definition

void anotherClass :: memberFunction(base& obj)

{

 cout << "Private Variable: " << obj.private_variable

 << endl;

 cout << "Protected Variable: " << obj.protected_variable;

}

// driver code

int main()

{

 base object1;

 anotherClass object2;

 object2.memberFunction(object1);

 return 0;

}

Output

Private Variable: 10

Protected Variable: 99

Note: The order in which we define the friend function of another class is important and should

be taken care of. We always have to define both the classes before the function definition. Thats

why we have used out of class member function definition.

Features of Friend Functions

• A friend function is a special function in C++ that in spite of not being a member

function of a class has the privilege to access the private and protected data of a

class.

• A friend function is a non-member function or ordinary function of a class, which

is declared as a friend using the keyword “friend” inside the class. By declaring a

function as a friend, all the access permissions are given to the function.

• The keyword “friend” is placed only in the function declaration of the friend

function and not in the function definition or call.

• A friend function is called like an ordinary function. It cannot be called using the

object name and dot operator. However, it may accept the object as an argument

whose value it wants to access.

• A friend function can be declared in any section of the class i.e. public or private

or protected.

70

Advantages of Friend Functions:

• A friend function is able to access members without the need of inheriting the class.

• The friend function acts as a bridge between two classes by accessing their private

data.

• It can be used to increase the versatility of overloaded operators.

• It can be declared either in the public or private or protected part of the class.

Disadvantages of Friend Functions:

• Friend functions have access to private members of a class from outside the class

which violates the law of data hiding.

• Friend functions cannot do any run-time polymorphism in their members.

C++ Static Data Members:

Static data members are class members that are declared using static keywords. A static

member has certain special characteristics which are as follows:

• Only one copy of that member is created for the entire class and is shared by all

the objects of that class, no matter how many objects are created.

• It is initialized before any object of this class is created, even before the main

starts outside the class itself.

• It is visible can be controlled with the class access specifiers.

• Its lifetime is the entire program.

Syntax

className {

 static data_type data_member_name;

}

Static data members are useful for maintaining data shared among all instances of a class.

Example

Below is the C++ program to demonstrate the working of static data members:

// C++ Program to demonstrate the use of

// static data members

#include <iostream>

using namespace std;

// class definition

class A {

public:

 // static data member here

 static int x;

 A() { cout << "A's constructor called " << endl; }

};

// we cannot initialize the static data member inside the

// class due to class rules and the fact that we cannot

// assign it a value using constructor

int A :: x = 2;

// Driver code

int main()

{

 // accessing the static data member using scope

 // resultion operator

71

 cout << "Accessing static data member: " << A::x

 << endl;

 return 0;

}

Output

Accessing static data member: 2

Defining Static Data Member

As told earlier, the static members are only declared in the class declaration. If we try to access

the static data member without an explicit definition, the compiler will give an error.

To access the static data member of any class we have to define it first and static data members

are defined outside the class definition. The only exception to this are static const data members

of integral type which can be initialized in the class declaration.

Syntax

datatype class_name::var_name = value...;

For example, in the above program, we have initialized the static data member using the

following statement:

int A::x = 10

Note: The static data members are initialized at compile time so the definition of static

members should be present before the compilation of the program

Accessing a Static Member:

We can access the static data member without creating the instance of the class. Just remember

that we need to initialize it beforehand. There are 2 ways of accessing static data members:

1. Accessing static data member using Class Name and Scope Resolution

Operator

The class name and the scope resolution operator can be used to access the static data member

even when there are no instances/objects of the class present in the scope.

Syntax

Class_Name :: var_name

Example

A::x

2. Accessing static data member through Objects

We can also access the static data member using the objects of the class using dot operator.

Syntax

object_name . var_name

Example

obj.x

Note: The access to the static data member can be controlled by the class access modifiers.

Example to Verify the Properties of the Static Data Members

The below example verifies the properties of the static data member that are told above:

// C++ Program to demonstrate

// the working of static data member

#include <iostream>

using namespace std;

// creating a dummy class to define the static data member

// it will inform when its type of the object will be

// created

class stMember {

72

public:

 int val;

 // constructor to inform when the instance is created

 stMember(int v = 10): val(v) {

 cout << "Static Object Created" << endl;

 }

};

// creating a demo class with static data member of type

// stMember

class A {

public:

 // static data member

 static stMember s;

 A() { cout << "A's Constructor Called " << endl; }

};

stMember A::s = stMember(11);

// Driver code

int main()

{

 // Statement 1: accessing static member without creating

 // the object

 cout << "accessing static member without creating the "

 "object: ";

 // this verifies the independency of the static data

 // member from the instances

 cout << A::s.val << endl;

 cout << endl;

 // Statement 2: Creating a single object to verify if

 // the seperate instance will be created for each object

 cout << "Creating object now: ";

 A obj1;

 cout << endl;

 // Statement 3: Creating multiple objects to verify that

 // each object will refer the same static member

 cout << "Creating object now: ";

 A obj2;

 cout << "Printing values from each object and classname"

 << endl;

 cout << "obj1.s.val: " << obj1.s.val << endl;

 cout << "obj2.s.val: " << obj2.s.val << endl;

 cout << "A::s.val: " << A::s.val << endl;

 return 0;

}

73

Output

Static Object Created

accessing static member without creating the object: 11

Creating object now: A's Constructor Called

Creating object now: A's Constructor Called

Printing values from each object and classname

obj1.s.val: 11

obj2.s.val: 11

A::s.val: 11

Static Member Function in C++:

Static Member Function in a class is the function that is declared as static because of which

function attains certain properties as defined below:

• A static member function is independent of any object of the class.

• A static member function can be called even if no objects of the class exist.

• A static member function can also be accessed using the class name through the

scope resolution operator.

• A static member function can access static data members and static member

functions inside or outside of the class.

• Static member functions have a scope inside the class and cannot access the

current object pointer.

• You can also use a static member function to determine how many objects of the

class have been created.

The reason we need Static member function:

• Static members are frequently used to store information that is shared by all

objects in a class.

• For instance, you may keep track of the quantity of newly generated objects of a

specific class type using a static data member as a counter. This static data member

can be increased each time an object is generated to keep track of the overall

number of objects.

Example:

// C++ Program to show the working of

// static member functions

#include <iostream>

using namespace std;

class Box

{

 private:

74

 static int length;

 static int breadth;

 static int height;

 public: static void print()

 {

 cout << "The value of the length is: " << length << endl;

 cout << "The value of the breadth is: " << breadth << endl;

 cout << "The value of the height is: " << height << endl;

 }

};

// initialize the static data members

int Box :: length = 10;

int Box :: breadth = 20;

int Box :: height = 30;

// Driver Code

int main()

{

 Box b;

 cout << "Static member function is called through Object name: \n" << endl;

 b.print();

 cout << "\nStatic member function is called through Class name: \n" << endl;

 Box::print();

 return 0;

}

Output

Static member function is called through Object name:

The value of the length is: 10

The value of the breadth is: 20

The value of the height is: 30

Static member function is called through Class name:

The value of the length is: 10

The value of the breadth is: 20

The value of the height is: 30

75

Operator Overloading in C++:

C++ has the ability to provide the operators with a special meaning for a data type, this ability

is known as operator overloading. Operator overloading is a compile-time polymorphism. For

example, we can overload an operator ‘+’ in a class like String so that we can concatenate two

strings by just using +. Other example classes where arithmetic operators may be overloaded

are Complex Numbers, Fractional Numbers, Big integers, etc.

Example:

int a;

float b,sum;

sum = a + b;

Here, variables “a” and “b” are of types “int” and “float”, which are built-in data types. Hence

the addition operator ‘+’ can easily add the contents of “a” and “b”. This is because the addition

operator “+” is predefined to add variables of built-in data type only.

Implementation:

// C++ Program to Demonstrate the

// working/Logic behind Operator

// Overloading

class A {

 statements;

};

int main()

{

 A a1, a2, a3;

 a3 = a1 + a2;

 return 0;

}

In this example, we have 3 variables “a1”, “a2” and “a3” of type “class A”. Here we are trying

to add two objects “a1” and “a2”, which are of user-defined type i.e. of type “class A” using

the “+” operator. This is not allowed, because the addition operator “+” is predefined to operate

only on built-in data types. But here, “class A” is a user-defined type, so the compiler generates

an error. This is where the concept of “Operator overloading” comes in.

Now, if the user wants to make the operator “+” add two class objects, the user has to redefine

the meaning of the “+” operator such that it adds two class objects. This is done by using the

concept of “Operator overloading”. So the main idea behind “Operator overloading” is to use

C++ operators with class variables or class objects. Redefining the meaning of operators really

does not change their original meaning; instead, they have been given additional meaning along

with their existing ones.

Example of Operator Overloading in C++

// C++ Program to Demonstrate

// Operator Overloading

#include <iostream>

using namespace std;

class Complex {

private:

 int real, imag;

76

public:

 Complex(int r = 0, int i = 0)

 {

 real = r;

 imag = i;

 }

 // This is automatically called when '+' is used with

 // between two Complex objects

 Complex operator+(Complex const& obj)

 {

 Complex res;

 res.real = real + obj.real;

 res.imag = imag + obj.imag;

 return res;

 }

 void print() { cout << real << " + i" << imag << '\n'; }

};

int main()

{

 Complex c1(10, 5), c2(2, 4);

 Complex c3 = c1 + c2;

 c3.print();

}

Output

12 + i9

Difference between Operator Functions and Normal Functions

Operator functions are the same as normal functions. The only differences are that the name of

an operator function is always the operator keyword followed by the symbol of the operator,

and operator functions are called when the corresponding operator is used.

Example

#include <iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex(int r = 0, int i = 0)

 {

 real = r;

 imag = i;

 }

 void print() { cout << real << " + i" << imag << endl; }

 // The global operator function is made friend of this

 // class so that it can access private members

 friend Complex operator+(Complex const& c1,

77

 Complex const& c2);

};

Complex operator+(Complex const& c1, Complex const& c2)

{

 return Complex(c1.real + c2.real, c1.imag + c2.imag);

}

int main()

{

 Complex c1(10, 5), c2(2, 4);

 Complex c3

 = c1

 + c2; // An example call to "operator+"

 c3.print();

 return 0;

}

Output

12 + i9

Can We Overload All Operators?

Almost all operators can be overloaded except a few. Following is the list of operators that

cannot be overloaded.

sizeof

typeid

Scope resolution (::)

Class member access operators (.(dot), .* (pointer to member operator))

Ternary or conditional (?:)

Operators that can be Overloaded in C++

We can overload

• Unary operators

• Binary operators

• Special operators ([], (), etc)

Table 5.1 Operators that can be overloaded

Operators that can be overloaded Examples

Binary Arithmetic +, -, *, /, %

Unary Arithmetic +, -, ++, —

Assignment =, +=,*=, /=,-=, %=

Bitwise & , | , << , >> , ~ , ^

78

Operators that can be overloaded Examples

De-referencing (->)

Dynamic memory allocation,

De-allocation
New, delete

Subscript []

Function call ()

Logical &, | |, !

Relational >, < , = =, <=, >=

Why can’t the above-stated operators be overloaded?

1. sizeof Operator

This returns the size of the object or datatype entered as the operand. This is evaluated by the

compiler and cannot be evaluated during runtime. The proper incrementing of a pointer in an

array of objects relies on the sizeof operator implicitly. Altering its meaning using overloading

would cause a fundamental part of the language to collapse.

2. typeid Operator

This provides a CPP program with the ability to recover the actually derived type of the object

referred to by a pointer or reference. For this operator, the whole point is to uniquely identify

a type. If we want to make a user-defined type ‘look’ like another type, polymorphism can be

used but the meaning of the typeid operator must remain unaltered, or else serious issues could

arise.

3. Scope resolution (::) Operator

This helps identify and specify the context to which an identifier refers by specifying a

namespace. It is completely evaluated at runtime and works on names rather than values. The

operands of scope resolution are note expressions with data types and CPP has no syntax for

capturing them if it were overloaded. So it is syntactically impossible to overload this operator.

4. Class member access operators (.(dot), .* (pointer to member operator))

The importance and implicit use of class member access operators can be understood through

the following example:

Example:

// C++ program to demonstrate operator overloading

// using dot operator

#include <iostream>

using namespace std;

class ComplexNumber {

private:

79

 int real;

 int imaginary;

public:

 ComplexNumber(int real, int imaginary)

 {

 this->real = real;

 this->imaginary = imaginary;

 }

 void print() { cout << real << " + i" << imaginary; }

 ComplexNumber operator+(ComplexNumber c2)

 {

 ComplexNumber c3(0, 0);

 c3.real = this->real + c2.real;

 c3.imaginary = this->imaginary + c2.imaginary;

 return c3;

 }

};

int main()

{

 ComplexNumber c1(3, 5);

 ComplexNumber c2(2, 4);

 ComplexNumber c3 = c1 + c2;

 c3.print();

 return 0;

}

Output

5 + i9

Explanation:

The statement ComplexNumber c3 = c1 + c2; is internally translated as ComplexNumber c3 =

c1.operator+ (c2); in order to invoke the operator function. The argument c1 is implicitly

passed using the ‘.’ operator. The next statement also makes use of the dot operator to access

the member function print and pass c3 as an argument.

Besides, these operators also work on names and not values and there is no provision

(syntactically) to overload them.

5. Ternary or conditional (?:) Operator

The ternary or conditional operator is a shorthand representation of an if-else statement. In the

operator, the true/false expressions are only evaluated on the basis of the truth value of the

conditional expression.

conditional statement ? expression1 (if statement is TRUE) : expression2 (else)

A function overloading the ternary operator for a class say ABC using the definition

ABC operator ?: (bool condition, ABC trueExpr, ABC falseExpr);

would not be able to guarantee that only one of the expressions was evaluated. Thus, the ternary

operator cannot be overloaded.

Important Points about Operator Overloading:

1) For operator overloading to work, at least one of the operands must be a user-defined class

object.

80

2) Assignment Operator: Compiler automatically creates a default assignment operator with

every class. The default assignment operator does assign all members of the right side to the

left side and works fine in most cases (this behavior is the same as the copy constructor).

3) Conversion Operator: We can also write conversion operators that can be used to convert

one type to another type.

Example:

// C++ Program to Demonstrate the working

// of conversion operator

#include <iostream>

using namespace std;

class Fraction {

private:

 int num, den;

public:

 Fraction(int n, int d)

 {

 num = n;

 den = d;

 }

 // Conversion operator: return float value of fraction

 operator float() const

 {

 return float(num) / float(den);

 }

};

int main()

{

 Fraction f(2, 5);

 float val = f;

 cout << val << '\n';

 return 0;

}

Output

0.4

Overloaded conversion operators must be a member method. Other operators can either be the

member method or the global method.

4) Any constructor that can be called with a single argument works as a conversion constructor,

which means it can also be used for implicit conversion to the class being constructed.

Example:

// C++ program to demonstrate can also be used for implicit

// conversion to the class being constructed

#include <iostream>

using namespace std;

class Point {

private:

81

 int x, y;

public:

 Point(int i = 0, int j = 0)

 {

 x = i;

 y = j;

 }

 void print()

 {

 cout << "x = " << x << ", y = " << y << '\n';

 }

};

int main()

{

 Point t(20, 20);

 t.print();

 t = 30; // Member x of t becomes 30

 t.print();

 return 0;

}

Output

x = 20, y = 20

x = 30, y = 0

82

6. INHERITANCE

Inheritance in C++:

The capability of a class to derive properties and characteristics from another class is called

Inheritance. Inheritance is one of the most important features of Object Oriented Programming

in C++.

Syntax of Inheritance in C++

class derived_class_name : access-specifier base_class_name

{

 // body

};

where,

• class: keyword to create a new class

• derived_class_name: name of the new class, which will inherit the base class

• access-specifier: Specifies the access mode which can be either of private, public

or protected. If neither is specified, private is taken as default.

• base-class-name: name of the base class.

Note: A derived class doesn’t inherit access to private data members. However, it does inherit

a full parent object, which contains any private members which that class declares.

Example:

class ABC : private XYZ {...} // private derivation

class ABC : public XYZ {...} // public derivation

class ABC : protected XYZ {...} // protected derivation

class ABC: XYZ {...} // private derivation by default

The following programs demonstrate how to implement inheritance in our C++ programs.

Example 1: Program to Demonstrate the Simple Inheritance of a Class

// C++ program to demonstrate how to inherit a class

#include <iostream>

using namespace std;

// Base class that is to be inherited

class Parent {

public:

 // base class members

 int id_p;

 void printID_p()

 {

 cout << "Base ID: " << id_p << endl;

 }

};

// Sub class or derived publicly inheriting from Base

// Class(Parent)

class Child : public Parent {

public:

 // derived class members

 int id_c;

 void printID_c()

83

 {

 cout << "Child ID: " << id_c << endl;

 }

};

// main function

int main()

{

 // creating a child class object

 Child obj1;

 // An object of class child has all data members

 // and member functions of class parent

 // so we try accessing the parents method and data from

 // the child class object.

 obj1.id_p = 7;

 obj1.printID_p();

 // finally accessing the child class methods and data

 // too

 obj1.id_c = 91;

 obj1.printID_c();

 return 0;

}

Output

Base ID: 7

Child ID: 91

In the above program, the ‘Child’ class is publicly inherited from the ‘Parent’ class so the

public data members of the class ‘Parent’ will also be inherited by the class ‘Child’.

Example 2: Access the Inherited Members of the Base Class in Derived Class

// C++ program to illustrate how to access the inherited

// members of the base class in derived class

#include <iostream>

using namespace std;

// Base class

class Base {

public:

 // data member

 int publicVar;

 // member method

 void display()

 {

 cout << "Value of publicVar: " << publicVar;

 }

};

// Derived class

class Derived : public Base {

public:

 // Function to display inherited member

84

 void displayMember()

 {

 // accessing public base class member method

 display();

 }

 // Function to modify inherited member

 void modifyMember(int pub)

 {

 // Directly modifying public member

 publicVar = pub;

 }

};

int main()

{

 // Create an object of Derived class

 Derived obj;

 // Display the initial values of inherited member

 obj.modifyMember(10);

 // Display the modified values of inherited member

 obj.displayMember();

 return 0;

}

Output

Value of publicVar: 10

In the above example, we have accessed the public members of the base class in the derived

class but we cannot access all the base class members directly in the derived class. It depends

on the mode of inheritance and the access specifier in the base class.

Modes of Inheritance in C++:

Mode of inheritance controls the access level of the inherited members of the base class in the

derived class. In C++, there are 3 modes of inheritance:

• Public Mode

• Protected Mode

• Private Mode

Public Inheritance Mode

If we derive a subclass from a public base class. Then the public member of the base class will

become public in the derived class and protected members of the base class will become

protected in the derived class.

Example:

class ABC : public XYZ {...} // public derivation

Protected Inheritance Mode

If we derive a subclass from a Protected base class. Then both public members and protected

members of the base class will become protected in the derived class.

Example:

class ABC : protected XYZ {...} // protected derivation

Private Inheritance Mode

85

If we derive a subclass from a Private base class. Then both public members and protected

members of the base class will become private in the derived class. They can only be accessed

by the member functions of the derived class.

Private mode is the default mode that is applied when we don’t specify any mode.

Example:

class ABC : private XYZ {...} // private derivation

class ABC: XYZ {...} // private derivation by default

Note: The private members in the base class cannot be directly accessed in the derived class,

while protected and public members can be directly accessed. To access or update the private

members of the base class in derived class, we have to declare the derived class as friend class.

The below table summarizes the above three modes and shows the access specifier of the

members of the base class in the subclass when derived in public, protected and private modes:

Table 6.1Modes of Inheritance

Examples of Modes of Inheritance

Example 1: Program to show different kinds of Inheritance Modes and their

Member Access Levels

// C++ program to show that a derived class

// doesn’t inherit access to private data members.

// However, it does inherit a full parent object.

class A {

public:

 int x;

protected:

 int y;

private:

 int z;

};

class B : public A {

 // x is public

 // y is protected

 // z is not accessible from B

};

class C : protected A {

 // x is protected

 // y is protected

 // z is not accessible from C

};

86

class D : private A // 'private' is default for classes

{

 // x is private

 // y is private

 // z is not accessible from D

};

Example 2: Program to Access the Private Members of the Base Class in

Derived Class

// C++ program to illustrate how to access the private data

// members of the base class in derived class using public

// getter methods of base class

#include <iostream>

using namespace std;

// Base class

class Base {

private:

 int privateVar;

public:

 // Constructor to initialize privateVar

 Base(int val): privateVar(val){}

 // Public getter function to get the value of privateVar

 int getPrivateVar() const { return privateVar; }

 // Public setter function to set the value of privateVar

 void setPrivateVar(int val) { privateVar = val; }

};

// Derived class

class Derived : public Base {

public:

 // Constructor to initialize the base class

 Derived(int val) : Base(val){}

 // Function to display the private member of the base

 // class

 void displayPrivateVar()

 {

 // Accessing privateVar using the public member

 // function of the base class

 cout << "Value of privateVar in Base class: "

 << getPrivateVar() << endl;

 }

 // Function to modify the private member of the base

 // class

 void modifyPrivateVar(int val)

 {

 // Modifying privateVar using the public member

 // function of the base class

 setPrivateVar(val);

 }

87

};

int main()

{

 // Create an object of Derived class

 Derived obj(10);

 // Display the initial value of privateVar

 obj.displayPrivateVar();

 // Modify the value of privateVar

 obj.modifyPrivateVar(20);

 // Display the modified value of privateVar

 obj.displayPrivateVar();

 return 0;

}

Output

Value of privateVar in Base class: 10

Value of privateVar in Base class: 20

The above program shows the method in which the private members of the base class remain

encapsulated and are only accessible through controlled public or protected member functions.

We can also access the private members of the base class by declaring the derived class as

friend class in the base class.

// C++ program to illustrate how to access the private

// members of the base class by declaring the derived class

// as friend class in the base class

#include <iostream>

using namespace std;

// Forward declaration of the Derived class

class Derived;

// Base class

class Base {

private:

 int privateVar;

public:

 // Constructor to initialize privateVar

 Base(int val)

 : privateVar(val)

 {

 }

 // Declare Derived class as a friend

 friend class Derived;

88

};

// Derived class

class Derived {

public:

 // Function to display the private member of the base

 // class

 void displayPrivateVar(Base& obj)

 {

 // Accessing privateVar directly since Derived is a

 // friend of Base

 cout << "Value of privateVar in Base class: "

 << obj.privateVar << endl;

 }

 // Function to modify the private member of the base

 // class

 void modifyPrivateVar(Base& obj, int val)

 {

 // Modifying privateVar directly since Derived is a

 // friend of Base

 obj.privateVar = val;

 }

};

int main()

{

 // Create an object of Base class

 Base baseObj(10);

 // Create an object of Derived class

 Derived derivedObj;

 // Display the initial value of privateVar

 derivedObj.displayPrivateVar(baseObj);

 // Modify the value of privateVar

 derivedObj.modifyPrivateVar(baseObj, 20);

 // Display the modified value of privateVar

 derivedObj.displayPrivateVar(baseObj);

 return 0;

}

Output

Value of privateVar in Base class: 10

Value of privateVar in Base class: 20

Types Of Inheritance in C++:

The inheritance can be classified on the basis of the relationship between the derived class and

the base class. In C++, we have 5 types of inheritances:

1. Single inheritance

2. Multilevel inheritance

89

3. Multiple inheritance

4. Hierarchical inheritance

5. Hybrid inheritance

1. Single Inheritance

In single inheritance, a class is allowed to inherit from only one class. i.e. one base class is

inherited by one derived class only.

Syntax

class subclass_name : access_mode base_class

{

 // body of subclass

};

Example:

class A

{

...

};

class B: public A

{

...

};

Implementation:

// C++ program to demonstrate how to implement the Single

// inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

public:

 Vehicle() { cout << "This is a Vehicle\n"; }

};

// sub class derived from a single base classes

class Car : public Vehicle {

public:

 Car() { cout << "This Vehicle is Car\n"; }

};

// main function

int main()

{

 // Creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output

This is a Vehicle

This Vehicle is Car

90

2. Multiple Inheritance

Multiple Inheritance is a feature of C++ where a class can inherit from more than one class. i.e

one subclass is inherited from more than one base class.

Syntax

class subclass_name : access_mode base_class1, access_mode base_class2,

{

 // body of subclass

};

Here, the number of base classes will be separated by a comma (‘, ‘) and the access mode for

every base class must be specified and can be different.

Example:

class A

{

...

};

class B

{

...

};

class C: public A, public B

{

...

};

Implementation:

// C++ program to illustrate the multiple inheritance

#include <iostream>

using namespace std;

// first base class

class Vehicle {

public:

 Vehicle() { cout << "This is a Vehicle\n"; }

};

// second base class

class FourWheeler {

public:

 FourWheeler() { cout << "This is a 4 Wheeler\n"; }

};

// sub class derived from two base classes

class Car : public Vehicle, public FourWheeler {

 public:

 Car() { cout << "This 4 Wheeler Vehical is a Car\n"; }

};

// main function

int main()

{

 // Creating object of sub class will

 // invoke the constructor of base classes.

 Car obj;

 return 0;

}

91

Output

This is a Vehicle

This is a 4 Wheeler

This 4 Wheeler Vehical is a Car

3. Multilevel Inheritance

In this type of inheritance, a derived class is created from another derived class and that derived

class can be derived from a base class or any other derived class. There can be any number of

levels.

Syntax

class derived_class1: access_specifier base_class

{

...

}

class derived_class2: access_specifier derived_class1

{

...

}

.....

Example:

class C

{

...

};

class B : public C

{

...

};

class A: public B

{

...

};

Implementation

// C++ program to implement Multilevel Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

public:

 Vehicle() { cout << "This is a Vehicle\n"; }

};

// first sub_class derived from class vehicle

class fourWheeler : public Vehicle {

public:

 fourWheeler() { cout << "4 Wheeler Vehicles\n"; }

};

// sub class derived from the derived base class fourWheeler

92

class Car : public fourWheeler {

public:

 Car() { cout << "This 4 Wheeler Vehical is a Car\n"; }

};

// main function

int main()

{

 // Creating object of sub class will

 // invoke the constructor of base classes.

 Car obj;

 return 0;

}

Output

This is a Vehicle

4 Wheeler Vehicles

This 4 Wheeler Vehical is a Car

4. Hierarchical Inheritance

In this type of inheritance, more than one subclass is inherited from a single base class. i.e.

more than one derived class is created from a single base class.

Syntax

class derived_class1: access_specifier base_class

{

...

}

class derived_class2: access_specifier base_class

{

...

}

Example:

class A

{

 // body of the class A.

}

class B : public A

{

 // body of class B.

}

class C : public A

{

 // body of class C.

}

class D : public A

{

 // body of class D.

}

Implementation

// C++ program to implement Hierarchical Inheritance

93

#include <iostream>

using namespace std;

// base class

class Vehicle {

public:

 Vehicle() { cout << "This is a Vehicle\n"; }

};

// first sub class

class Car : public Vehicle {

public:

 Car() { cout << "This Vehicle is Car\n"; }

};

// second sub class

class Bus : public Vehicle {

public:

 Bus() { cout << "This Vehicle is Bus\n"; }

};

// main function

int main()

{

 // Creating object of sub class will

 // invoke the constructor of base class.

 Car obj1;

 Bus obj2;

 return 0;

}

Output

This is a Vehicle

This Vehicle is Car

This is a Vehicle

This Vehicle is Bus

5. Hybrid Inheritance

Hybrid Inheritance is implemented by combining more than one type of inheritance. For

example: Combining Hierarchical inheritance and Multiple Inheritance will create hybrid

inheritance in C++

There is no particular syntax of hybrid inheritance. We can just combine two of the above

inheritance types.

Example:

class F

{

...

}

class G

{

...

}

94

class B : public F

{

...

}

class E : public F, public G

{

...

}

class A : public B {

...

}

class C : public B {

...

}

Implementation:

// C++ program to illustrate the implementation of Hybrid Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

public:

 Vehicle() { cout << "This is a Vehicle\n"; }

};

// base class

class Fare {

public:

 Fare() { cout << "Fare of Vehicle\n"; }

};

// first sub class

class Car : public Vehicle {

 public:

 Car() { cout << "This Vehical is a Car\n"; }

};

// second sub class

class Bus : public Vehicle, public Fare {

 public:

 Bus() { cout << "This Vehicle is a Bus with Fare\n"; }

};

// main function

int main()

{

 // Creating object of sub class will

 // invoke the constructor of base class.

 Bus obj2;

 return 0;

}

95

Output

This is a Vehicle

Fare of Vehicle

This Vehicle is a Bus with Fare

A Special Case of Hybrid Inheritance: Multipath Inheritance

In multipath inheritance, a class is derived from two base classes and these two base classes in

turn are derived from one common base class. An ambiguity can arise in this type of inheritance

in the most derived class. This problem is also called diamond problem due to shape of

inherited path.

Constructors and Destructors in Inheritance:

Constructors and Destructors are generally defined by the programmer and if not, the compiler

automatically creates them, so they are present in every class in C++. Now, the question arises

what happens to the constructor and destructor when a class is inherited by another class.

In C++ inheritance, the constructors and destructors are not inherited by the derived

class, but we can call the constructor of the base class in derived class.

• The constructors will be called by the complier in the order in which they are

inherited. It means that base class constructors will be called first, then derived class

constructors will be called.

• The destructors will be called in reverse order in which the compiler is declared.

• We can also call the constructors and destructors manually in the derived class.

Example

// C++ program to show the order of constructor call

// in single inheritance

#include <iostream>

using namespace std;

// base class

class Parent {

public:

 // base class constructor

 Parent() { cout << "Inside base class" << endl; }

};

// sub class

class Child : public Parent {

public:

 // sub class constructor

 Child() { cout << "Inside sub class" << endl; }

};

// main function

int main()

{

96

 // creating object of sub class

 Child obj;

 return 0;

}

Output

Inside base class

Inside sub class

97

7. POLYMORPHISM

C++ Polymorphism:

The word “polymorphism” means having many forms. In simple words, we can define

polymorphism as the ability of a message to be displayed in more than one form. A real-life

example of polymorphism is a person who at the same time can have different characteristics.

A man at the same time is a father, a husband, and an employee. So, the same person exhibits

different behavior in different situations. This is called polymorphism. Polymorphism is

considered one of the important features of Object-Oriented Programming.

Types of Polymorphism

• Compile-time Polymorphism

• Runtime Polymorphism

Fig 7.1 Types of Polymorphism

1. Compile-Time Polymorphism

This type of polymorphism is achieved by function overloading or operator overloading.

Function overloading and operator overloading is already discussed.

2. Runtime Polymorphism

This type of polymorphism is achieved by Function Overriding. Late binding and dynamic

polymorphism are other names for runtime polymorphism. The function call is resolved at

runtime in runtime polymorphism. In contrast, with compile time polymorphism, the

compiler determines which function call to bind to the object after deducing it at runtime.

A. Function Overriding

Function overriding occurs when a derived class has a definition for one of the member

functions of the base class. That base function is said to be overridden.

Runtime Polymorphism with Data Members

Runtime Polymorphism cannot be achieved by data members in C++. Let’s see an example

where we are accessing the field by reference variable of parent class which refers to the

instance of the derived class.

// C++ program for function overriding with data members

#include <bits/stdc++.h>

using namespace std;

// base class declaration.

98

class Animal {

public:

 string color = "Black";

};

// inheriting Animal class.

class Dog : public Animal {

public:

 string color = "Grey";

};

// Driver code

int main(void)

{

 Animal d = Dog(); // accessing the field by reference

 // variable which refers to derived

 cout << d.color;

}

Output

Black

We can see that the parent class reference will always refer to the data member of the parent

class.

B. Virtual Function

A virtual function is a member function that is declared in the base class using the keyword

virtual and is re-defined (Overridden) in the derived class.

Some Key Points About Virtual Functions:

• Virtual functions are Dynamic in nature.

• They are defined by inserting the keyword “virtual” inside a base class and are

always declared with a base class and overridden in a child class

• A virtual function is called during Runtime

Below is the C++ program to demonstrate virtual function:

// C++ Program to demonstrate

// the Virtual Function

#include <iostream>

using namespace std;

// Declaring a Base class

class GFG_Base {

public:

 // virtual function

 virtual void display()

 {

 cout << "Called virtual Base Class function"

 << "\n\n";

 }

 void print()

 {

 cout << "Called GFG_Base print function"

 << "\n\n";

99

 }

};

// Declaring a Child Class

class GFG_Child : public GFG_Base {

public:

 void display()

 {

 cout << "Called GFG_Child Display Function"

 << "\n\n";

 }

 void print()

 {

 cout << "Called GFG_Child print Function"

 << "\n\n";

 }

};

int main()

{

 // Create a reference of class GFG_Base

 GFG_Base* base;

 GFG_Child child;

 base = &child;

 // This will call the virtual function

 base->display();

 // This will call the non-virtual function

 base->print();

}

Output

Called GFG_Child Display Function

Called GFG_Base print function

Example 2:

// C++ program for virtual function overriding

#include <bits/stdc++.h>

using namespace std;

class base {

public:

 virtual void print()

 {

 cout << "print base class" << endl;

 }

100

 void show() { cout << "show base class" << endl; }

};

class derived : public base {

public:

 // print () is already virtual function in

 // derived class, we could also declared as

 // virtual void print () explicitly

 void print() { cout << "print derived class" << endl; }

 void show() { cout << "show derived class" << endl; }

};

// Driver code

int main()

{

 base* bptr;

 derived d;

 bptr = &d;

 // Virtual function, binded at

 // runtime (Runtime polymorphism)

 bptr->print();

 // Non-virtual function, binded

 // at compile time

 bptr->show();

 return 0;

}

Output

print derived class

show base class

Pure Virtual Functions and Abstract Classes in C++:

Sometimes implementation of all functions cannot be provided in a base class because we don’t

know the implementation. Such a class is called an abstract class. For example, let Shape be

a base class. We cannot provide the implementation of function draw() in Shape, but we know

every derived class must have an implementation of draw(). Similarly, an Animal class doesn’t

have the implementation of move() (assuming that all animals move), but all animals must

know how to move. We cannot create objects of abstract classes.

A pure virtual function (or abstract function) in C++ is a virtual function for which we can

have an implementation, but we must override that function in the derived class, otherwise, the

derived class will also become an abstract class. A pure virtual function is declared by assigning

0 in the declaration.

Example of Pure Virtual Functions

// An abstract class

class Test {

 // Data members of class

public:

101

 // Pure Virtual Function

 virtual void show() = 0;

 /* Other members */

};

Complete Example

A pure virtual function is implemented by classes that are derived from an Abstract class.

// C++ Program to illustrate the abstract class and virtual

// functions

#include <iostream>

using namespace std;

class Base {

 // private member variable

 int x;

public:

 // pure virtual function

 virtual void fun() = 0;

 // getter function to access x

 int getX() { return x; }

};

// This class inherits from Base and implements fun()

class Derived : public Base {

 // private member variable

 int y;

public:

 // implementation of the pure virtual function

 void fun() { cout << "fun() called"; }

};

int main(void)

{

 // creating an object of Derived class

 Derived d;

 // calling the fun() function of Derived class

 d.fun();

 return 0;

}

Output

fun() called

Some Interesting Facts

1. A class is abstract if it has at least one pure virtual function.

Example

In the below C++ code, Test is an abstract class because it has a pure virtual function show().

// C++ program to illustrate the abstract class with pure

// virtual functions

102

#include <iostream>

using namespace std;

class Test {

 // private member variable

 int x;

public:

 // pure virtual function

 virtual void show() = 0;

 // getter function to access x

 int getX() { return x; }

};

int main(void)

{

 // Error: Cannot instantiate an abstract class

 Test t;

 return 0;

}

Output

Compiler Error: cannot declare variable 't' to be of abstract

 type 'Test' because the following virtual functions are pure

within 'Test': note: virtual void Test::show()

2. We can have pointers and references of abstract class type.

For example, the following program works fine.

// C++ program that demonstrate that

// we can have pointers and references

// of abstract class type.

#include <iostream>

using namespace std;

class Base {

public:

 // pure virtual function

 virtual void show() = 0;

};

class Derived : public Base {

public:

 // implementation of the pure virtual function

 void show() { cout << "In Derived \n"; }

};

int main(void)

{

 // creating a pointer of type

 // Base pointing to an object

 // of type Derived

 Base* bp = new Derived();

 // calling the show() function using the

 // pointer

 bp->show();

103

 return 0;

}

Output

In Derived

3. If we do not override the pure virtual function in the derived class, then the derived

class also becomes an abstract class.

The following example demonstrates the same.

// C++ program to demonstrate that if we do not override

// the pure virtual function in the derived class, then

// the derived class also becomes an abstract class

#include <iostream>

using namespace std;

class Base {

public:

 // pure virtual function

 virtual void show() = 0;

};

class Derived : public Base {

};

int main(void)

{

 // creating an object of Derived class

 Derived d;

 return 0;

}

Output

Compiler Error: cannot declare variable 'd' to be of abstract type

'Derived' because the following virtual functions are pure within

'Derived': virtual void Base::show()

4. An abstract class can have constructors.

For example, the following program compiles and runs fine.

// C++ program to demonstrate that

// an abstract class can have constructors.

#include <iostream>

using namespace std;

// An abstract class with constructor

class Base {

protected:

 // protected member variable

 int x;

104

public:

 // pure virtual function

 virtual void fun() = 0;

 // constructor of Base class

 Base(int i)

 {

 x = i;

 cout << "Constructor of base called\n";

 }

};

class Derived : public Base {

 // private member variable

 int y;

public:

 // calling the constructor of Base class

 Derived(int i, int j)

 : Base(i)

 {

 y = j;

 }

 // implementation of pure virtual function

 void fun()

 {

 cout << "x = " << x << ", y = " << y << '\n';

 }

};

int main(void)

{

 // creating an object of Derived class

 Derived d(4, 5);

 // calling the fun() function of Derived class

 d.fun();

 // creating an object of Derived class using

 // a pointer of the Base class

 Base* ptr = new Derived(6, 7);

 // calling the fun() function using the

 // pointer

 ptr->fun();

 return 0;

}

Output

Constructor of base called

105

x = 4, y = 5

Constructor of base called

x = 6, y = 7

5. An abstract class in C++ can also be defined using struct keyword.

Example

struct shapeClass

{

 virtual void Draw()=0;

}

Virtual Destructor:

Deleting a derived class object using a pointer of base class type that has a non-virtual

destructor result in undefined behavior. To correct this situation, the base class should be

defined with a virtual destructor.

For example, the following program results in undefined behavior.

// CPP program without virtual destructor

// causing undefined behavior

#include <iostream>

using namespace std;

class base {

 public:

 base()

 { cout << "Constructing base\n"; }

 ~base()

 { cout<< "Destructing base\n"; }

};

class derived: public base {

 public:

 derived()

 { cout << "Constructing derived\n"; }

 ~derived()

 { cout << "Destructing derived\n"; }

};

106

int main()

{

 derived *d = new derived();

 base *b = d;

 delete b;

 getchar();

 return 0;

}

Output

Constructing base

Constructing derived

Destructing base

Making base class destructor virtual guarantees that the object of derived class is destructed

properly, i.e., both base class and derived class destructors are called. For example,

// A program with virtual destructor

#include <iostream>

using namespace std;

class base {

 public:

 base()

 { cout << "Constructing base\n"; }

 virtual ~base()

 { cout << "Destructing base\n"; }

};

class derived : public base {

 public:

 derived()

 { cout << "Constructing derived\n"; }

 ~derived()

 { cout << "Destructing derived\n"; }

107

};

int main()

{

 derived *d = new derived();

 base *b = d;

 delete b;

 getchar();

 return 0;

}

Output

Constructing base

Constructing derived

Destructing derived

Destructing base

As a guideline, any time you have a virtual function in a class, you should immediately add a

virtual destructor (even if it does nothing). This way, you ensure against any surprises later.

108

8. FILE AND STREAMS

File Handling through C++ Classes:

File handling is used to store data permanently in a computer. Using file handling we can

store our data in secondary memory (Hard disk). How to achieve the File Handling?

For achieving file handling we need to follow the following steps:-

 STEP 1-Naming a file

 STEP 2-Opening a file

 STEP 3-Writing data into the file

 STEP 4-Reading data from the file

 STEP 5-Closing a file.

Streams in C++ :-

We give input to the executing program and the execution program gives back the output.

The sequence of bytes given as input to the executing program and the sequence of bytes that

comes as output from the executing program are called stream. In other words, streams are

nothing but the flow of data in a sequence.

The input and output operation between the executing program and the devices like keyboard

and monitor are known as “console I/O operation”. The input and output operation between

the executing program and files are known as “disk I/O operation”.

Classes for File stream operations:-

The I/O system of C++ contains a set of classes which define the file handling methods.

These include ifstream, ofstream and fstream classes. These classes are derived from fstream

and from the corresponding iostream class. These classes, designed to manage the disk files,

are declared in fstream and therefore we must include this file in any program that uses files.

File handling is essential for data storage and retrieval in applications.

1. ios:-

• ios stands for input output stream.

• This class is the base class for other classes in this class hierarchy.

• This class contains the necessary facilities that are used by all the other derived

classes for input and output operations.

2. istream:-

• istream stands for input stream.

• This class is derived from the class ‘ios’.

• This class handle input stream.

• The extraction operator(>>) is overloaded in this class to handle input streams

from files to the program execution.

• This class declares input functions such as get(), getline() and read().

3. ostream:-

• ostream stands for output stream.

• This class is derived from the class ‘ios’.

• This class handle output stream.

• The insertion operator (<<) is overloaded in this class to handle output streams

to files from the program execution.

• This class declares output functions such as put() and write().

4. streambuf:-

• This class contains a pointer which points to the buffer which is used to manage

the input and output streams.

109

5. fstreambase:-

• This class provides operations common to the file streams. Serves as a base for

fstream, ifstream and ofstream class.

• This class contains open() and close() function.

6. ifstream:-

• This class provides input operations.

• It contains open() function with default input mode.

• Inherits the functions get(), getline(), read(), seekg() and tellg() functions from

the istream.

7. ofstream:-

• This class provides output operations.

• It contains open() function with default output mode.

• Inherits the functions put(), write(), seekp() and tellp() functions from the

ostream.

8. fstream:-

• This class provides support for simultaneous input and output operations.

• Inherits all the functions from istream and ostream classes through iostream.

9. filebuf:-

• Its purpose is to set the file buffers to read and write.

• We can also use file buffer member function to determine the length of the file.

In C++, files are mainly dealt by using three classes fstream, ifstream, ofstream available in

fstream headerfile.

ofstream: Stream class to write on files

ifstream: Stream class to read from files

fstream: Stream class to both read and write from/to files.

Fig 8.1 header files and their classes

Now the first step to open the particular file for read or write operation. We can open file by

1. passing file name in constructor at the time of object creation

2. using the open method

For e.g.

Open File by using constructor

ifstream (const char* filename, ios_base::openmode mode = ios_base::in);

ifstream fin(filename, openmode) //by default openmode = ios::in

ifstream fin(“filename”);

Open File by using open method

//Calling of default constructor

110

ifstream fin;

fin.open(filename, openmode)

fin.open(“filename”);

Table 8.1 file opening modes

Member

Constant Stands For Access

ios::in input
File open for reading: the internal stream buffer

supports input operations.

ios::out output
File open for writing: the internal stream buffer

supports output operations.

ios::binary binary
Operations are performed in binary mode rather than

text.

ios::ate at end The output position starts at the end of the file.

ios::app append
All output operations happen at the end of the file,

appending to its existing contents.

ios::trunc truncate
Any contents that existed in the file before it is open

are discarded.

ios::nocreate
Do not

create
Does not allow to create new file if it does not exist.

ios::noreplace
Do not

replace
Does not replace old file with new file.

Both ios::app and ios::ate take us to the end of the file when it is opened. The difference

between the two modes is that ios :: app allow us to add data to the end of the file only, while

ios :: ate mode permits us add data or to modify the existing data anywhere in the file.

Table 8.2 Default Open Modes

111

ifstream ios::in

ofstream ios::out

fstream ios::in | ios::out

Problem Statement : To read and write a File in C++.

Examples:

Input :

Welcome, we live in a beautiful world!

-1

Output :

Welcome, we live in a beautiful world!

Below is the implementation by using ifstream & ofstream classes.

/* File Handling with C++ using ifstream & ofstream class object*/

/* To write the Content in File*/

/* Then to read the content of file*/

#include <iostream>

/* fstream header file for ifstream, ofstream,

 fstream classes */

#include <fstream>

using namespace std;

// Driver Code

int main()

{

 // Creation of ofstream class object

 ofstream fout;

 string line;

 // by default ios::out mode, automatically deletes

 // the content of file. To append the content, open in ios:app

 // fout.open("sample.txt", ios::app)

 fout.open("sample.txt");

 // Execute a loop If file successfully opened

 while (fout) {

 // Read a Line from standard input

 getline(cin, line);

 // Press -1 to exit

112

 if (line == "-1")

 break;

 // Write line in file

 fout << line << endl;

 }

 // Close the File

 fout.close();

 // Creation of ifstream class object to read the file

 ifstream fin;

 // by default open mode = ios::in mode

 fin.open("sample.txt");

 // Execute a loop until EOF (End of File)

 while (getline(fin, line)) {

 // Print line (read from file) in Console

 cout << line << endl;

 }

 // Close the file

 fin.close();

 return 0;

}

Below is the implementation by using fstream class.

/* File Handling with C++ using fstream class object */

/* To write the Content in File */

/* Then to read the content of file*/

#include <iostream>

/* fstream header file for ifstream, ofstream,

 fstream classes */

#include <fstream>

using namespace std;

// Driver Code

int main()

{

 // Creation of fstream class object

 fstream fio;

 string line;

113

 // by default openmode = ios::in|ios::out mode

 // Automatically overwrites the content of file, To append

 // the content, open in ios:app

 // fio.open("sample.txt", ios::in|ios::out|ios::app)

 // ios::trunc mode delete all content before open

 fio.open("sample.txt", ios::trunc | ios::out | ios::in);

 // Execute a loop If file successfully Opened

 while (fio) {

 // Read a Line from standard input

 getline(cin, line);

 // Press -1 to exit

 if (line == "-1")

 break;

 // Write line in file

 fio << line << endl;

 }

 // Execute a loop until EOF (End of File)

 // point read pointer at beginning of file

 fio.seekg(0, ios::beg);

 while (fio) {

 // Read a Line from File

 getline(fio, line);

 // Print line in Console

 cout << line << endl;

 }

 // Close the file

 fio.close();

 return 0;

}

Q: write a single file handling program in c++ to reading and writing data on a file.

// Include necessary header files

#include <fstream>

#include <iostream>

#include <string>

// Use the standard namespace

using namespace std;

114

int main()

{

 // Create an output file stream object

 ofstream fout;

 // Open a file named "NewFile.txt" for writing

 fout.open("NewFile.txt");

 // Check if the file opened successfully

 if (!fout) {

 // Print an error message if the file couldn't be

 // opened

 cerr << "Error opening file!" << endl;

 // Return 1 to indicate failure

 return 1;

 }

 // Declare a string variable to hold each line of text

 string line;

 // Initialize a counter to limit input to 5 lines

 int i = 0;

 // Prompt the user to enter 5 lines of text

 cout << "Enter 5 lines of text:" << endl;

 // Loop to read 5 lines of input from the user

 while (i < 5) {

 // Read a line of text from standard input

 getline(cin, line);

 // Write the line of text to the file

 fout << line << endl;

 // Increment the counter

 i += 1;

 }

 // Close the file after writing

 fout.close();

 // Print a success message

 cout << "Text successfully written to NewFile.txt"

 << endl;

 // Return 0 to indicate successful execution

 return 0;

}

Output

Enter 5 lines of text:

Hi, Welcome Everyone

Learn to code

C++

115

Java

Python

>>Text successfully written to NewFile.txt

Q: WA C++ file handling program to read data from the file called student.doc

#include<iostream>

#include<fstream>

using namespace std;

main()

{

 int rno,fee;

 char name[50];

 ifstream fin("d:/student.doc");

 fin>>rno>>name>>fee; //read data from the file student

 fin.close();

 cout<<endl<<rno<<"\t"<<name<<"\t"<<fee;

 return 0;

}

