
 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

1

Lab Manual

of

Database Management Systems

Subject Code: CS 313
Class: ICD Vth Semester

Prepared by:

Dr. Jagdeep Singh

Assistant Professor (CSE)

 Department
of

Computer Science and Engineering

Sant Longowal Institute of Engineering and Technology, Longowal, India

October 2024

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

2

CERTIFICATE

This is to certify that this manual is a bonafide record of practical work in the DBMS Lab in
Vth Semester of III Year ICD (CSE) program during the academic year 2024-25. This
content was prepared by Dr. Jagdeep Singh (Assistant Professor), Department of Computer
Science and Engineering.

Dr. Jagdeep Singh

AP, CSE,

SLIET LONGOWAL

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

3

Syllabus

Title of the course : Database Management Lab

Subject Code : CS-313

Course outcomes: At the end of the course, students will be able to:

CO1 Devise queries using DDL, DML, DCL and TCL commands.
CO2 Develop application programs using PL/SQL.
CO3 Create views, forms and reports.
CO4 Familiarization with different types of keys.

CO/PO Mapping : (Strong(S)/Medium(M)/Weak(W) indicates strength of correlation)

COs
Programme Outcomes (POs)

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10
CO1 S S M S
CO2 S M S S
CO3 S S M S
CO4 S M M S

LIST OF PRACTICALS

1. Introduction to various constraints such as Primary key, secondary key, Super key, etc.
2. To study Data Definition Commands (create, drop).
3. To study Data Manipulation Commands (insert, delete, update, select)
4. To study Data Control Commands (Commit, revoke, rollback, connect, execute)
5. Create Table, SQL for Insertion, Deletion, Update and Retrieval using aggregating

functions.
6. Write Programs in PL/SQL, Understanding the concept of Cursors.
7. Write Program for Join, Union & intersection etc.
8. Creating Views, Writing Assertions, and

Triggers.
9. Creating Forms, Reports etc.
10. WAP in PL/SQL for adding two numbers.
11. WAP in PL/SQL for reversing the number. For example the number is 12345 and

reverse number will be 54321.
12. WAP in PL/SQL to find the number is even or odd.
13. WAP in PL/SQL to count numbers from 1 to 100.

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

4

PREFACE

This "DBMS" lab manual is designed to teach the fundamentals of data base design,
emphasizing implementation in the SQL/PLSQL programming language. Readers of this
manual are expected to be familiar with the syntax of SQL and similar procedural languages.
DBMS concepts are increasingly critical to the IT industry, particularly for software
development at the system level.

This practical manual has been carefully prepared to enhance the development of procedural
programming skills. It includes a variety of exercises and their solutions so that students can
understand them quickly and easily. This manual will prove valuable to Computer Science &
Engineering students in grasping the applied aspects of database. There is always room for
improvement, and we welcome suggestions from readers and users for future editions.

BY

Dr. Jagdeep Singh

AP, CSE, SLIET LONGOWAL

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

5

ACKNOWLEDGEMENT

It was a wonderful experience working on the “DBMS Lab” manual. First, I would like to
express my sincere gratitude to Prof. Birmohan Singh, Head of the Department of Computer
Science and Engineering, for his continuous support and technical guidance in preparing this
document. I am deeply indebted and would like to acknowledge the invaluable support and
patronage of Prof. Mani Kant Paswan, Director of the institute, for providing me with this
excellent opportunity and his constant encouragement throughout the process. Finally, I extend
my heartfelt thanks to the entire faculty of the CSE Department, whose inspiration and
assistance helped me achieve this goal.

BY

Dr. Jagdeep Singh

AP, CSE, SLIET LONGOWAL

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

6

General Instructions

1. Punctuality: Students must arrive on time for the DBMS lab. Latecomers will not be
allowed to participate in the lab session.

2. Attendance: Programs missed due to tardiness will be avoided. Students are expected
to be on time.

3. Preparation: Students should prepare at home for the sessions' scheduled Programs.
4. ID Cards: Displaying an identity card is mandatory for entry into the lab.
5. Mobile Phones: Students need help to bring mobile phones into the lab.
6. Responsibility for Equipment: Any damage or loss of equipment, such as keyboards

or mice, during the lab session will be the student's responsibility. A penalty or fine will
be imposed if necessary.

7. Lab Records: Students must update their lab observation books and records after each
session. Before leaving, they must get their lab observation book signed by the faculty
member.

8. Submission of Lab Records: Lab records must be submitted to the faculty in the
staffroom during the next lab session for correction and return.

9. Movement in the Lab: Students should remain at their assigned stations and avoid
moving around during the lab session.

10. Emergencies: In an emergency, students must obtain written permission from the
faculty member in charge.

11. Disciplinary Action: Faculty members can suspend students from the lab session for
disciplinary reasons.

12. Original Work: Students should not copy outputs from others. They must write their
own results.

BY

Dr. Jagdeep Singh

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

7

LIST OF PROGRAMS

1. Introduction to various constraints such as Primary key, secondary key, Super key, etc.

2. To study Data Definition Commands (create, drop).

3. To study Data Manipulation Commands (insert, delete, update, select)

4. To study Data Control Commands (Commit, revoke, rollback, connect, execute)

5. WAP in SQL for learning the concept VIEWS

6. WAP in SQL to understand the concept of MIN, MAX, AVG and COUNT, etc.

7. WAP in SQL using ORDER BY and GROUP BY clause.

8. WAP in SQL to understand the concept of subqueries.

9. WAP in SQL using FOREIGN KEY.

10. WAP in SQL to learn the concept of RANK() and DENSERANK().

11. WAP in SQL to CONCAT Function.

12. WAP in SQL to learn the concept for STRING FUNCTION.

13. WAP in SQL for CONDITIONAL statements

14. WAP in SQL to learn TRANSCATION.

15. WAP in SQL to learn the concept of TRIGGER .

16. WAP in SQL using UNION and INTERSECT

17. WAP in SQL for Join, Union & intersection etc.

18. WAP in PL/SQL for adding two numbers.

19. WAP in PL/SQL for reversing the number. For example the number is 12345 and
reverse number will be 54321.

20. WAP in PL/SQL to find the number is even or odd.

21. WAP in PL/SQL to count numbers from 1 to 20.

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

8

Program 1. Introduction to various constraints such as Primary key, secondary key,
Super key, etc.

1. Primary Key

 A unique identifier for each record in a table.
 Characteristics:

o Must contain unique values.
o Cannot contain NULL values.
o There can only be one primary key per table, which may consist of a single

or multiple columns (composite key).

2. Secondary Key

 An attribute or a set of attributes used to access records in a database but does not
uniquely identify them.

 Characteristics:
o Allows for efficient retrieval of records based on non-unique attributes.
o Can contain duplicate values and NULLs.

3. Super Key

 A set of one or more attributes that can uniquely identify a record in a table.
 Characteristics:

o Can include primary keys and any additional attributes.
o Not necessarily minimal; a super key may contain extra attributes beyond

those needed for uniqueness.

4. Candidate Key

 A minimal super key, meaning it uniquely identifies a record without any extra
attributes.

 Characteristics:
o A table can have multiple candidate keys.
o One candidate key is chosen as the primary key.

5. Foreign Key

 An attribute or a set of attributes in one table that refers to the primary key in
another table.

 Characteristics:
o Establishes a relationship between two tables.
o Can contain duplicate values and NULLs.

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

9

CREATE DATABASE Employees;

USE Employees;

-- Create the "departments" table

CREATE TABLE departments (

 dept_id INT PRIMARY KEY, -- Primary Key

 dept_name VARCHAR(50) UNIQUE -- Unique constraint

);

-- Insert sample data into "departments"

INSERT INTO departments (dept_id, dept_name) VALUES (1, 'HR');

INSERT INTO departments (dept_id, dept_name) VALUES (2, 'Finance');

INSERT INTO departments (dept_id, dept_name) VALUES (3, 'IT');

-- Create the "employees" table

CREATE TABLE employees (

 emp_id INT PRIMARY KEY, -- Primary Key

 emp_name VARCHAR(50) NOT NULL, -- Not Null constraint

 dept_id INT, -- Foreign Key constraint

 emp_email VARCHAR(100) UNIQUE, -- Unique constraint

 -- Define a foreign key constraint referencing "departments" table

 FOREIGN KEY (dept_id) REFERENCES departments(dept_id)

);

-- Insert sample data into "employees"

INSERT INTO employees (emp_id, emp_name, dept_id, emp_email)

VALUES (1, 'Alice', 1, 'alice@example.com');

INSERT INTO employees (emp_id, emp_name, dept_id, emp_email)

VALUES (2, 'Bob', 2, 'bob@example.com');

INSERT INTO employees (emp_id, emp_name, dept_id, emp_email)

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

10

VALUES (3, 'Charlie', 1, 'charlie@example.com');

INSERT INTO employees (emp_id, emp_name, dept_id, emp_email)

VALUES (4, 'David', 3, 'david@example.com');

-- Select query to display all records in the "departments" table

SELECT * FROM departments;

-- Select query to display all records in the "employees" table

SELECT * FROM employees;

-- Select query to retrieve employee names along with their department names

SELECT e.emp_name, e.emp_email, d.dept_name

FROM employees e

JOIN departments d ON e.dept_id = d.dept_id;

Output:

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

11

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

12

Program 2. To study Data Definition Commands (create, drop).

CREATE Command: Used to create new database objects such as tables, views, indexes, or
schemas.

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 HireDate DATE

);

DROP Command: Used to delete existing database objects like tables, views, or indexes.

DROP TABLE Employees;

Output:

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

13

Program 3. To study Data Manipulation Commands (insert, delete, update, select)

INSERT Command: Adds new records (rows) to a table.

INSERT INTO Employees (EmployeeID, FirstName, LastName, HireDate)

VALUES (1, 'John', 'Doe', '2023-01-15');

DELETE Command: Removes existing records from a table.

DELETE FROM Employees

WHERE EmployeeID = 1;

UPDATE Command: Modifies existing records in a table.

UPDATE Employees

SET LastName = 'Smith'

WHERE EmployeeID = 1;

SELECT Command: Retrieves data from one or more tables.

SELECT FirstName, LastName

FROM Employees

WHERE HireDate > '2022-01-01';

Output:

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

14

Programs 4

To study data control commands commit, revoke, rollback, connect , execute

COMMIT: Saves all changes made during the current
transaction permanently in the database. Once committed,
the changes cannot be rolled back.

Syntax: COMMIT;

REVOKE: Removes previously granted permissions or
privileges from a user or role, which affects access to
database objects like tables, views, or procedures.

Syntax: REVOKE privilege_type ON object_name FROM
user_name;

ROLLBACK: Reverts all changes made during the current
transaction to the last committed state, undoing any
modifications since the transaction began.

Syntax: ROLLBACK;

CONNECT: Establishes a connection between the user
and the database, allowing them to perform operations
within that session.

Syntax: CONNECT
user_name/password@database_name;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

15

EXECUTE: Runs a specified SQL command or stored
procedure, often used in procedural languages like
PL/SQL to execute code blocks, queries, or stored
functions.

Syntax: EXECUTE procedure_name;

Programs 5

WAP in SQL for learning the concept VIEWS

A view in SQL is a virtual table that is based on the result of a query. It does not store data
itself; instead, it provides a way to present data from one or more tables in a specific format
or structure.

Virtual Table: A view is treated like a table in SQL, but it does not hold any data. Instead, it
generates data dynamically when queried.

Views are a powerful feature in SQL that enhance data management, security, and
usability. They allow you to encapsulate complex queries and present data in a user-
friendly manner, making them valuable tools for database design and interaction.

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

16

CREATE DATABASE CompanyDB;

USE CompanyDB;

 CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Department VARCHAR(50),

 Salary DECIMAL(10, 2));

 INSERT INTO Employees (EmployeeID, FirstName, LastName, Department, Salary)
VALUES

 (1, 'John', 'Doe', 'Sales', 60000.00),

(2, 'Jane', 'Smith', 'HR', 50000.00),

 (3, 'Jim', 'Brown', 'Sales', 55000.00),

 (4, 'Jake', 'White', 'IT', 70000.00);

 SELECT * FROM Employees;

CREATE VIEW SalesEmployees

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

17

 AS SELECT EmployeeID, FirstName, LastName, Salary FROM Employees

WHERE Department = 'Sales';

SELECT * FROM SalesEmployees;

Programs 6

WAP in SQL to understand the concept of MIN,MAX,AVG and COUNT,etc.

The MIN function is used to retrieve the smallest value from a specified column in a table. It can be applied to
numeric, date, or string columns.

The MAX function is used to find the largest value in a specified column. Similar to MIN, it can be applied to
numeric, date, or string columns.

The AVG function calculates the average (mean) value of a numeric column. It sums all the values in the column
and divides by the count of non-null entries.

The COUNT function counts the number of rows that meet a specified condition. It can be used to count all
rows, non-null values in a column, or distinct values.
Create Database Employee; use Employee; create table employees(employee_id int primary key,

first_name varchar(20), last_name varchar(20), salary decimal(10,2), department varchar(10)

);

insert into employees(employee_id,first_name,last_name,salary,department) values

(1,"Priyanshu","Raj",90000,"Marketing"),

(2,"Sanskar","Raj",100000,"HR"),

(3,"Avinash","Aryan",900000,"Finance"),

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

18

(4,"Sanjeev","Kumar",900000,"IT"),

(5,"Krish","Rajan",100000,"Marketing"),

(6,"Aman","Raj",80000,"HR"),

(7,"Rahul","Raj",70000,"Finance"),

(8,"Alok","Raj",60000,"IT"); select * from

employees; select * from employees where

first_name like 'P%';

select * from employees where salary IS NULL;

select * from employees where salary IS NOT NULL;

select count(*) as total_employees from employees;

Select MAX(salary) as highest_salary from employees;

Select MIN(salary) as lowest_salary from employees;

Select AVG(salary) as average_salary from employees;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

19

Select * from employees where salary > (select avg(salary) from employees);

Programs 7

WAP in SQL using ORDER BY and GROUP BY clause.

ORDER BY
 Purpose: To sort the result set of a query based on one or more columns.
 Usage: It can sort data in ascending (ASC) or descending (DESC) order.

GROUP BY
Purpose: To group rows that have the same values in specified columns into
summary rows, often used with aggregate functions (like COUNT, SUM,
AVG).
Usage: It allows you to perform operations on each group of data.

CREATE DATABASE college;

USE College;

CREATE TABLE student(

roll_no INT PRIMARY KEY,

name VARCHAR(50),

marks FLOAT,

grade VARCHAR(5),

city VARCHAR(50)

);

INSERT INTO student(roll_no,name,marks,grade,city)

VALUES

(101,"Ram",97,"A","Delhi"),

(102,"Shyam",84,"B","Mumbai"),

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

20

(103,"Rohan",79,"C","Chennai"),

(104,"Narayan",88,"B","Bangaluru"),

(105,"Rakesh",63,"D","Kolkata");

SELECT DISTINCT grade FROM student;

SELECT * FROM Student

WHERE marks+3=100;

SELECT * FROM Student

WHERE marks>80 OR city="Kolkata";

SELECT * FROM Student

ORDER BY city ASC;

SELECT * FROM Student

ORDER BY marks DESC

LIMIT 3;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

21

SELECT city,count(name)

FROM college.Student

Group By city;

SELECT city, avg(marks)

FROM student

GROUP BY city

ORDER BY city;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

22

Program 8

WAP in SQL to understand the concept of subqueries.

A subquery, or inner query, is a query nested inside another SQL query (the outer query).
Subqueries can be used in various parts of a SQL statement, including the SELECT, FROM, and
WHERE clauses.

CREATE DATABASE retail_store;

USE retail_store;

CREATE TABLE employees (

 employee_id INT PRIMARY KEY,

 name VARCHAR(50),

 position VARCHAR(50),

 salary DECIMAL(10, 2)

);

CREATE TABLE customers (

 customer_id INT PRIMARY KEY,

 name VARCHAR(50),

 email VARCHAR(100)

);

INSERT INTO employees (employee_id, name, position, salary) VALUES

(1, 'Alice', 'Manager', 60000),

(2, 'Bob', 'Sales', 50000),

(3, 'Charlie', 'Sales', 50000),

(4, 'David', 'Support', 40000);

select*from employees;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

23

INSERT INTO customers (customer_id, name, email) VALUES

(1, 'John Doe', 'john@example.com'),

(2, 'Jane Smith', 'jane@example.com');

select*from customers;

SELECT name, salary

FROM employees

WHERE salary > (SELECT AVG(salary) FROM employees);

SELECT name

FROM employees

WHERE employee_id IN (SELECT customer_id FROM customers WHERE position = 'sales');

Program 9

WAP in SQL using FOREIGN KEY.

Referential integrity is a database concept that ensures relationships between tables remain
consistent. It guarantees that a foreign key in one table must correspond to an existing primary key
in another table. This helps maintain data accuracy and integrity across related tables.

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

24

Foreign Key Constraints: Referential integrity is enforced using foreign keys. A foreign key in a
child table points to a primary key in a parent table, ensuring that any value in the foreign key column
matches a value in the primary key column.

CREATE DATABASE School;

USE School;

-- Create Students table

CREATE TABLE Students (

 StudentID INT PRIMARY KEY ,

 FirstName VARCHAR(50),

 LastName VARCHAR(50)

);

-- Create Courses table

CREATE TABLE Courses (

 CourseID INT PRIMARY KEY,

 CourseName VARCHAR(100)

);

-- Create Enrollments table with foreign keys

CREATE TABLE Enrollments (

 EnrollmentID INT PRIMARY KEY,

 StudentID INT,

 CourseID INT,

 FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Courses(CourseID)

);

-- Insert sample data into Students

INSERT INTO Students (FirstName, LastName) VALUES ('John', 'Doe');

INSERT INTO Students (FirstName, LastName) VALUES ('Jane', 'Smith');

Select*from Students;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

25

-- Insert sample data into Courses

INSERT INTO Courses (CourseName) VALUES ('Mathematics');

INSERT INTO Courses (CourseName) VALUES ('Science');

Select*from Courses;

-- Insert sample data into Enrollments

INSERT INTO Enrollments (StudentID, CourseID) VALUES (1, 1);

INSERT INTO Enrollments (StudentID, CourseID) VALUES (2, 2);

SELECT

 s.FirstName,

 s.LastName,

 c.CourseName

FROM

 Enrollments e

JOIN

 Students s ON e.StudentID = s.StudentID

JOIN

 Courses c ON e.CourseID = c.CourseID;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

26

Programs 10.

WAP in SQL to learn the concept of RANK() and DENSERANK().

RANK: This function assigns a rank to each row within a partition of a result set. If two or
more students have the same score, they will receive the same rank, and the next rank(s) will
be skipped. For example, if two students are tied for rank 1, the next rank will be 3.

DENSE_RANK: Similar to RANK, but it does not skip ranks. If two students have the same
score, they receive the same rank, but the next rank will be the immediate next number. For
example, if two students are tied for rank 1, the next rank will be 2.

CREATE DATABASE Scho;

USE Scho;

CREATE TABLE Students (

 StudentID INT PRIMARY KEY AUTO_INCREMENT,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Score INT

);

INSERT INTO Students (FirstName, LastName, Score) VALUES

('Alice', 'Johnson', 85),

('Bob', 'Smith', 95),

('Charlie', 'Brown', 85),

('David', 'Wilson', 70),

('Eve', 'Davis', 95);

SELECT

 StudentID,

 FirstName,

 LastName,

 Score,

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

27

RANK() OVER (ORDER BY Score DESC) AS Ran

FROM

 Students;

SELECT

 StudentID,

 FirstName,

 LastName,

 Score,

 DENSE_RANK() OVER (ORDER BY Score DESC) AS DenseRank

FROM

 Students;

Programs 11

WAP in SQL to CONCAT Function.

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

28

The CONCAT function in SQL is used to combine two or more strings into a single string. It is
useful for creating full names, concatenating address fields, or forming any composite string from
multiple sources.

CREATE DATABASE S;

USE S;

CREATE TABLE Students (

 StudentID INT PRIMARY KEY AUTO_INCREMENT,

 FirstName VARCHAR(50),

 LastName VARCHAR(50)

);

INSERT INTO Students (FirstName, LastName) VALUES

('Alice', 'Johnson'),

('Bob', 'Smith'),

('Charlie', 'Brown');

select *from Students;

SELECT

 StudentID,

 CONCAT(FirstName, ' ', LastName) AS FullName

FROM

 Students;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

29

Program 12

WAP in SQL to learn the concept for STRING FUNCTION.

CREATE DATABASE raj;

USE raj;

CREATE TABLE Students (

 StudentID INT PRIMARY KEY AUTO_INCREMENT,

 FirstName VARCHAR(50),

 LastName VARCHAR(50)

);

INSERT INTO Students (FirstName, LastName) VALUES

('Alice', 'Johnson'),

('Bob', 'Smith'),

('Charlie', 'Brown'),

('David', 'Wilson');

SELECT

 UPPER(FirstName) AS UpperFirstName,

 UPPER(LastName) AS UpperLastName

FROM

 Students;

SELECT

 LOWER(FirstName) AS LowerFirstName,

 LOWER(LastName) AS LowerLastName

FROM

 Students;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

30

SELECT

 FirstName,

 LastName,

 LENGTH(FirstName) AS FirstNameLength,

 LENGTH(LastName) AS LastNameLength

FROM

 Students;

SELECT

 SUBSTRING(FirstName, 1, 3) AS FirstThreeLetters

FROM

 Students;

Programs 13: WAP in SQL for CONDITIONAL statements

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

31

CASE Statement: This allows you to perform conditional logic within your SQL queries.

WHEN: Specifies the condition to evaluate.

THEN: Defines the result to return if the condition is true.

ELSE: Specifies a default result if none of the conditions are met.

CREATE DATABASE khushi;

USE khushi;

CREATE TABLE Students (

 StudentID INT PRIMARY KEY AUTO_INCREMENT,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Score INT

);

INSERT INTO Students (FirstName, LastName, Score) VALUES

('Alice', 'Johnson', 85),

('Bob', 'Smith', 92),

('Charlie', 'Brown', 75),

('David', 'Wilson', 88),

('Eve', 'Davis', 65);

select *from Students;

SELECT

 FirstName,

 LastName,

 Score,

 CASE

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

32

 WHEN Score >= 90 THEN 'A'

 WHEN Score >= 80 THEN 'B'

 WHEN Score >= 70 THEN 'C'

 WHEN Score >= 60 THEN 'D'

 ELSE 'F'

 END AS Grade

FROM

 Students;

Program 14: WAP in SQL to learn TRANSCATION.

A transaction in SQL is a sequence of one or more SQL operations that are executed as a single unit
of work. Transactions are crucial for maintaining data integrity and consistency in a database,
especially when multiple operations need to be treated as a cohesive operation.

CREATE DATABASE BankDB;

USE BankDB;

CREATE TABLE Accounts (

 AccountID INT PRIMARY KEY AUTO_INCREMENT,

 AccountHolder VARCHAR(100),

 Balance DECIMAL(10, 2)

);

INSERT INTO Accounts (AccountHolder, Balance) VALUES ('Alice', 500.00);

INSERT INTO Accounts (AccountHolder, Balance) VALUES ('Bob', 300.00);

-- Start a transaction

START TRANSACTION;

-- Step 1: Deduct money from Account A (Alice)

UPDATE Accounts SET Balance = Balance - 100 WHERE AccountID = 1;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

33

-- Step 2: Add money to Account B (Bob)

UPDATE Accounts SET Balance = Balance + 100 WHERE AccountID = 2;

-- Check Alice's balance after deduction

SELECT Balance FROM Accounts WHERE AccountID = 1;

-- If everything looks good, then commit the transaction

COMMIT; -- Or ROLLBACK; if you see an issue

Program 15

WAP in SQL to learn the concept of TRIGGER .

A trigger in SQL is a special kind of stored procedure that automatically executes (or "fires") in
response to specific events on a particular table or view. Triggers are typically used to enforce
business rules, maintain data integrity, or automate actions within the database without requiring
additional application code.

CREATE DATABASE C;

USE C;

-- Create Employees Table

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY AUTO_INCREMENT,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Salary DECIMAL(10, 2)

);

-- Create a Log Table to capture changes

CREATE TABLE EmployeeLog (

 LogID INT PRIMARY KEY AUTO_INCREMENT,

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

34

 EmployeeID INT,

 Action VARCHAR(50),

 LogTime DATETIME DEFAULT CURRENT_TIMESTAMP,

 FOREIGN KEY (EmployeeID) REFERENCES Employees(EmployeeID)

);

DELIMITER //

CREATE TRIGGER AfterEmployeeInsert

AFTER INSERT ON Employees

FOR EACH ROW

BEGIN

 INSERT INTO EmployeeLog (EmployeeID, Action)

 VALUES (NEW.EmployeeID, 'Inserted');

END //

CREATE TRIGGER AfterEmployeeUpdate

AFTER UPDATE ON Employees

FOR EACH ROW

BEGIN

 INSERT INTO EmployeeLog (EmployeeID, Action)

 VALUES (NEW.EmployeeID, 'Updated');

END //

-- Insert an employee

INSERT INTO Employees (FirstName, LastName, Salary) VALUES ('John', 'Doe', 50000.00);

-- Update an employee's salary

UPDATE Employees SET Salary = 55000.00 WHERE EmployeeID = 1;

-- Check the logs

SELECT * FROM Employees;

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

35

SELECT * FROM EmployeeLog;

Program 16

WAP in SQL using UNION and INTERSECT

UNION

 Purpose: Combines the result sets of two or more SELECT statements into a single result
set.

 Duplicates: By default, UNION removes duplicate rows from the result set. If you want to
include duplicates, you can use UNION ALL.

 Requirements: Each SELECT statement must have the same number of columns in the
result set, and the columns must have compatible data types.

-> INTERSECT

 Purpose: Returns only the rows that appear in both result sets from two SELECT
statements.

 Duplicates: INTERSECT automatically removes duplicates, returning only unique rows
that are common to both sets.

 Requirements: Similar to UNION, each SELECT statement must have the same number of
columns and compatible data types.

-- Create a Database

CREATE DATABASE SampleDB;

USE SampleDB;

-- Create First Table: Employees

CREATE TABLE Employees (

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

36

 EmployeeID INT PRIMARY KEY AUTO_INCREMENT,

 FirstName VARCHAR(50),

 LastName VARCHAR(50)

);

-- Create Second Table: Managers

CREATE TABLE Managers (

 ManagerID INT PRIMARY KEY AUTO_INCREMENT,

 FirstName VARCHAR(50),

 LastName VARCHAR(50)

);

-- Insert Sample Data into Employees

INSERT INTO Employees (FirstName, LastName) VALUES ('Alice', 'Smith');

INSERT INTO Employees (FirstName, LastName) VALUES ('Bob', 'Johnson');

INSERT INTO Employees (FirstName, LastName) VALUES ('Charlie', 'Brown');

-- Insert Sample Data into Managers

INSERT INTO Managers (FirstName, LastName) VALUES ('Alice', 'Smith');

INSERT INTO Managers (FirstName, LastName) VALUES ('David', 'Wilson');

-- UNION Example

SELECT FirstName, LastName FROM Employees

UNION

SELECT FirstName, LastName FROM Managers;

-- INTERSECT Example

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

37

SELECT FirstName, LastName FROM Employees

INTERSECT

SELECT FirstName, LastName FROM Managers;

Program 17. Write Program for Join, Union & intersection etc.

CREATE DATABASE IF NOT EXISTS Sliet_Cse;

USE Sliet_Cse;

CREATE TABLE Employee_1(

Department_Name VARCHAR(100) NOT NULL,

Department_Id INT NOT NULL,

Employee_Name VARCHAR(50) NOT NULL,

Employee_Id INT PRIMARY KEY

);

/*

Department Id for Various Departments:-

1. Computer Science Department :- 101

2. Mechanical Department :- 102

3. Electrical Department :- 103

4. Civil Department :- 104

5. Electronics Department :- 105

*/

INSERT INTO Employee_1

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

38

(Employee_Name,Department_Name,Employee_Id,Department_Id)

VALUES

("Ansh Girdher","Computer Science Department",2211086,101),

("Lavish Garg","Computer Science Department",2211094,101),

("keshav Khatak","Civil Department",2211097,104),

("Dinesh Kumar","Electronics Department",2211093,105),

("Anil Taak","Electronics Department",2211033,105),

("Manav Garg","Mechanical Department",2211096,102),

("Aditya Chauduary","Mechanical Department",2216551,102),

("Anmoldeep Singh","Electrical Department",2214126,103),

("Dipanshu","Electrical Department",2216553,103);

SELECT * FROM Employee_1 ORDER BY Department_Id ASC;

CREATE TABLE Seminar(

Department_Id INT NOT NULL,

Domain VARCHAR(100) NOT NULL

);

INSERT INTO Seminar

(Department_Id,Domain)

VALUES

(101,"Artificial Intelligence"),

(102,"AutoCAD"),

(103,"MATLAB"),

(104,"Google Sketchup"),

(105,"PIC Microcontroller");

SELECT * FROM Seminar ORDER BY Department_id ASC;

-- Inner Join

SELECT *

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

39

FROM Employee_1

INNER JOIN Seminar

ON Employee_1.Department_id = Seminar.Department_id;

-- Left Join

SELECT *

FROM Employee_1

LEFT JOIN Seminar

ON Employee_1.Department_id = Seminar.Department_id;

-- Right Join

SELECT *

FROM Employee_1

RIGHT JOIN Seminar

ON Employee_1.Department_id = Seminar.Department_id;

-- Full Join

SELECT * FROM Employee_1 as a

LEFT JOIN Seminar as b

ON a.Department_id = b.Department_id

UNION

SELECT * FROM Employee_1 as a

RIGHT JOIN Seminar as b

ON a.Department_id = b.Department_id

Output:

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

40

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

41

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

42

Program 18. WAP in PL/SQL for adding two numbers.

DECLARE

 num1 NUMBER := 10; -- First number

 num2 NUMBER := 20; -- Second number

 sum NUMBER; -- Variable to store the sum

BEGIN

 -- Calculate the sum

 sum := num1 + num2;

 -- Display the result

 DBMS_OUTPUT.PUT_LINE('The sum of ' || num1 || ' and ' || num2 || ' is: ' || sum);

END;

/

Output:

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

43

Program 19. WAP in PL/SQL for reversing the number. For example the number is
12345 and reverse number will be 54321.

DECLARE

 original_num NUMBER := 12345; -- Original number to be reversed

 reversed_num NUMBER := 0; -- Variable to store the reversed number

 remainder NUMBER; -- Variable to store the remainder

BEGIN

 -- Display the original number

 DBMS_OUTPUT.PUT_LINE('Original number: ' || original_num);

 -- Reverse the number

 WHILE original_num > 0 LOOP

 remainder := MOD(original_num, 10); -- Get the last digit

 reversed_num := (reversed_num * 10) + remainder; -- Append the last digit to the reversed
number

 original_num := TRUNC(original_num / 10); -- Remove the last digit from the original
number

 END LOOP;

 -- Display the reversed number

 DBMS_OUTPUT.PUT_LINE('Reversed number: ' || reversed_num);

END;

/

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

44

Program 20. WAP in PL/SQL to find the number is even or odd.

DECLARE

 num NUMBER := 7; -- Number to check (you can change this value)

BEGIN

 -- Check if the number is even or odd

 IF MOD(num, 2) = 0 THEN

 DBMS_OUTPUT.PUT_LINE(num || ' is an Even number.');

 ELSE

 DBMS_OUTPUT.PUT_LINE(num || ' is an Odd number.');

 END IF;

END;

/

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

45

Program 21. WAP in PL/SQL to count numbers from 1 to 20.

DECLARE

 counter NUMBER := 1; -- Start counter from 1

BEGIN

 WHILE counter <= 20 LOOP

 DBMS_OUTPUT.PUT_LINE(counter); -- Display the current number

 counter := counter + 1; -- Increment the counter by 1

 END LOOP;

END;

/

Output

 Prepared by: Dr. Jagdeep Singh, AP(CSE), SLIET Longowal

46

