
Data Structures Lab Sant Longowal Institute of Engineering and Technology

Data Structure Lab Manual

Subject Code: CS215
Class: ICD III Semester

DEPARTMENT
OF

COMPUTER SCIENCE AND ENGINEERING

1

Data Structures Lab Sant Longowal Institute of Engineering and Technology

CERTIFICATE

This is to certify that this manual is a bonafide record of practical work in the Data
Structure’s Lab in 3rd Semester of II Year ICD (CSE) program during the academic year
2024-24. This book was prepared by Dr. Amar Nath (Assistant Professor), Department of
Computer Science and Engineering.

BY

Dr. Amar Nath

AP, CSE, SLIET LONGOWAL

2

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Syllabus

3

Data Structures Lab Sant Longowal Institute of Engineering and Technology

INDEX

S.No Content Page No:
1. Write a C program that generates the Fibonacci series using recursion 9-14

2. Write a function that interchanges the first element with the last element,
the second element with the second last element, and so on

15-17

3. WAP to multiply two Matrices 17-20

4. Write a Function that removes all duplicate elements from an Array. 20-22

5. WAP that inserts an element at the beginning of the Linear Link List. 22-24

6. WAP that deletes an element from the beginning of the Linear Link List. 24-26

7. WAP that deletes an element from the end of the Linear Link
List.

26-29

8. WAP that deletes an element after a given element of the
given Linear Link List.

30-32

9. WAP that reverses the element of the Linear Link List. 32-35

10. WAP that concatenates two Linear Linked lists. 35-38

11. WAP to remove the Top element of the Stack. 38-41

12. WAP to insert (or push) an element at the Top of the Stack. 41-43

13. WAP to insert an element at the end of the queue. 43-45

14. WAP to remove the first element of the queue. 48-51

15. WAP to illustrate the implementation of Binary Search Tree. 51-54

16. WAP to sort an array of integers in ascending order using
Bubble Sort.

54-57

17. WAP to sort an array of integers in ascending order using
Insertion Sort.

57-58

18. 18. WAP to sort an array of integer in Ascending Order
using Quick Sort.

59-61

19. WAP to search an element using the Linear Search Method 61-63

20. WAP to search an element using the Binary Search Method6 63-65

4

Data Structures Lab Sant Longowal Institute of Engineering and Technology

PREFACE

This "Data Structures" lab manual is designed to teach the fundamentals of data structure
design and analysis, emphasizing implementation in the C programming language. Readers
of this manual are expected to be familiar with the syntax of C and similar procedural
languages. Data structure concepts are increasingly critical to the IT industry, particularly for
software development at the system level.

This practical manual has been carefully prepared to enhance the development of procedural
programming skills. It includes a variety of exercises and their solutions so that students can
understand them quickly and easily. This manual will prove valuable to Computer Science &
Engineering students in grasping the applied aspects of data structures. There is always room
for improvement, and we welcome suggestions from readers and users for future editions.

BY

Dr. Amar Nath

AP, CSE, SLIET LONGOWAL

5

Data Structures Lab Sant Longowal Institute of Engineering and Technology

ACKNOWLEDGEMENT

It was a wonderful experience working on the “Data Structures Lab” manual. First, I would
like to express my sincere gratitude to Prof. Birmohan, Head of the Department of
Computer Science and Engineering, for his continuous support and technical guidance in
preparing this document. I am deeply indebted and would like to acknowledge the invaluable
support and patronage of Prof. Mani Kant Paswan, Director of the institute, for providing
me with this excellent opportunity and his constant encouragement throughout the process.
Finally, I extend my heartfelt thanks to the entire faculty of the CSE Department, whose
inspiration and assistance helped me achieve this goal.

BY

Dr. Amar Nath

AP, CSE, SLIET LONGOWAL

6

Data Structures Lab Sant Longowal Institute of Engineering and Technology

General Instructions

1. Punctuality: Students must arrive on time for the Data Structures lab. Latecomers
will not be allowed to participate in the lab session.

2. Attendance: Experiments missed due to tardiness will be avoided. Students are
expected to be on time.

3. Preparation: Students should prepare at home for the sessions' scheduled
experiments.

4. ID Cards: Displaying an identity card is mandatory for entry into the lab.
5. Mobile Phones: Students need help to bring mobile phones into the lab.
6. Responsibility for Equipment: Any damage or loss of equipment, such as keyboards

or mice, during the lab session will be the student's responsibility. A penalty or fine
will be imposed if necessary.

7. Lab Records: Students must update their lab observation books and records after
each session. Before leaving, they must get their lab observation book signed by the
faculty member.

8. Submission of Lab Records: Lab records must be submitted to the faculty in the
staffroom during the next lab session for correction and return.

9. Movement in the Lab: Students should remain at their assigned stations and avoid
moving around during the lab session.

10. Emergencies: In an emergency, students must obtain written permission from the
faculty member in charge.

11. Disciplinary Action: Faculty members can suspend students from the lab session for
disciplinary reasons.

12. Original Work: Students should not copy outputs from others. They must write their
own results.

BY

Dr. Amar Nath

AP, CSE, SLIET LONGOWAL

7

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Vision & Mission and Programme Educational Objectives

Vision
● To achieve technical & research excellence in Computer Science and Engineering with

industrial & social perspectives.

Mission
● To provide an environment for imparting high-quality technical education, skill

development, research, and development.
● To disseminate sound knowledge of recent Computer Technologies by organizing

seminars/workshops/short-term courses.
● To develop interaction and collaboration with the industry.
● To facilitate Hands-on training to the students to promote Self-Employment

Program Educational Objectives (PEOs) – ICD
1. To provide students with the basic knowledge of Computer fundamentals, Hardware,

Operating Systems, Internet and Networking, Databases, and Computer Programming.
2. Enhance students' critical thinking skills with the help of practical training and in-house

training to develop their analytical, problem-solving, and decision-making skills.
3. To provide students with a deep insight into various cutting-edge technologies & tools,

creating diverse career opportunities.
4. To provide a solid academic, technical, and intellectual background to enable them to

pursue degree courses.

8

http://cs.sliet.ac.in/about/vision-mission/

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Experiment 1. Write a C program that generates the Fibonacci series using recursion

#include <stdio.h>

// Function to calculate Fibonacci number using recursion
int fibonacci(int n) {

if (n == 0)
return 0; // Base case 1: Fibonacci(0) = 0

else if (n == 1)
return 1; // Base case 2: Fibonacci(1) = 1

else
return fibonacci(n - 1) + fibonacci(n - 2); // Recursive case

}

int main() {
int n, i;

printf("Enter the number of terms: ");
scanf("%d", &n);

printf("Fibonacci Series: ");
for (i = 0; i < n; i++) {

printf("%d ", fibonacci(i)); // Call the recursive function
}

return 0;
}

Explanation:

● The Fibonacci function calculates the Fibonacci number of a given n using
recursion.

● The base cases are when n == 0 (returns 0) and n == 1 (returns 1).
● The function recursively calls itself with the previous two terms (n-1) and (n-2) to

get the next Fibonacci number.
● The number of terms n is taken from the user in the main function, and the

Fibonacci series is printed using a loop.

9

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Viva-questions

1. What is recursion in C? How does it work?
a. Follow-up: Can you explain the difference between recursion and iteration?

2. What is the base case in a recursive function? Why is it important in recursion?
a. Follow-up: What will happen if a base case is not provided in a recursive

function?
3. Can you explain the time complexity of the Fibonacci program using recursion?

a. Follow-up: How can the time complexity be improved?
4. What is the difference between the iterative and recursive approach for generating a

Fibonacci series?
5. How is the stack used during the execution of recursive function calls?

a. Follow-up: What is a stack overflow error, and how could it occur in this
program?

6. What is the role of the function call stack in recursion?
a. Follow-up: How does the function call stack behave when the Fibonacci

function is called recursively?
7. Can you explain the flow of execution when the Fibonacci series is generated using

recursion?
a. Follow-up: What are the values of Fibonacci (3) and Fibonacci (4)?

8. How would you modify the program to handle large Fibonacci numbers without
causing stack overflow or excessive function calls?

9. What are the advantages and disadvantages of using recursion over loops to
generate a Fibonacci series?

10. What is memoization, and how can it be applied to optimize the recursive Fibonacci
program?

10

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Answers

What is recursion in C? How does it work?

Recursion in C is a technique where a function calls itself to solve a problem. It works by
breaking down a complex problem into smaller instances of the same problem, solving
these smaller instances, and then combining the results. The function keeps calling itself
until it reaches a base case, which terminates the recursion. Without a base case, the
recursion would continue infinitely.

2. Can you explain the difference between recursion and iteration?

● Recursion: A function repeatedly calls itself with simpler inputs, solving the
problem by reducing it step by step until reaching a base case. Recursion requires
more memory due to the function call stack and may be less efficient for some
problems.

● Iteration: Uses loops (e.g., for, while) to execute a code block repeatedly. It’s
generally more efficient than recursion because it doesn’t require extra memory for
function calls and does not involve stack overhead.

3. What is the base case in a recursive function? Why is it important in recursion?

The base case is the condition that stops the recursion. It’s crucial because the function
would keep calling itself indefinitely without it, leading to a stack overflow. In the
Fibonacci example, the base cases are Fibonacci (0), returning 0, and Fibonacci (1)
returning 1.

4. What will happen if a base case is not provided in a recursive function?

Without a base case, the function will continue calling itself indefinitely, creating more and
more frames in the function call stack. This eventually leads to a stack overflow error as the
program exceeds the stack memory limit.

5. Can you explain the time complexity of the Fibonacci program using recursion?

The time complexity of the recursive Fibonacci program is O(2^n). This is because, for
each call of Fibonacci (n), the function makes two additional recursive calls: Fibonacci
(n-1) and Fibonacci (n-2). As a result, the function performs redundant calculations,
leading to exponential growth in the number of calls.

11

Data Structures Lab Sant Longowal Institute of Engineering and Technology

6. How can the time complexity be improved?

Time complexity can be improved using memoization, a technique that stores previously
computed values and reuses them when needed. This reduces the number of redundant
calculations, improving the time complexity to O(n). Alternatively, an iterative approach
can also reduce the time complexity to O(n).

7. What is the difference between the iterative and recursive approach for generating a
Fibonacci series?

● Recursive approach: The function calls itself repeatedly, with a high time
complexity of O(2^n) and additional overhead from function calls.

● Iterative approach: Uses loops to calculate the Fibonacci sequence
straightforwardly. It has a linear time complexity of O(n) and is generally more
efficient in terms of both time and space.

8. How is the stack used to execute recursive function calls?

In recursion, a new stack frame is created each time a function is called that stores the
function's local variables, parameters, and return address. The stack grows with each
recursive call and shrinks as the function returns. When the base case is reached, the
function starts unwinding, returning results to the previous frames in the stack.

9. What is a stack overflow error, and how could it occur in this program?

A stack overflow error occurs when the call stack exceeds its memory limit due to too
many function calls, which may happen if the recursion depth becomes too large. In the
Fibonacci program, if n is very large, the recursive function calls will build up too many
stack frames, leading to this error.

10. What is the role of the function call stack in recursion?

The function call stack maintains information about active function calls, storing their local
variables, parameters, and return addresses. In recursion, each function call adds a new
frame to the stack, and when a function returns, its frame is popped off the stack.

11. How does the function call stack behave when the Fibonacci function is called
recursively?

When Fibonacci (n) is called, the function pushes a frame onto the stack for each recursive

12

Data Structures Lab Sant Longowal Institute of Engineering and Technology

call. As the function calls Fibonacci (n-1) and Fibonacci (n-2), more frames are added to
the stack. Once the base case is reached, the results are passed back through the stack, and
each frame is popped off as the recursion unwinds.

12. Can you explain the flow of execution when the Fibonacci series is generated using
recursion?

When fibonacci(n) is called:

1. It checks the base cases (n == 0 or n == 1).
2. If the base case is not reached, the function calls itself twice for Fibonacci (n-1) and

Fibonacci (n-2).
3. This process continues recursively, building up a call stack until the base case is

reached.
4. Once the base case is reached, the results are returned back up the call stack.
5. The intermediate Fibonacci numbers are combined to get the final result.

13. What are the values of fibonacci(3) and fibonacci(4)?

● Fibonacci(3) = 2
● Fibonacci(4) = 3

14. How would you modify the program to handle large Fibonacci numbers without
causing stack overflow or excessive function calls?

To handle large Fibonacci numbers:

● Use memoization to store previously calculated Fibonacci numbers, avoiding
redundant recursive calls.

● Switch to an iterative approach to avoid the recursive call stack altogether.
● Alternatively, use dynamic programming or tail recursion if supported, to optimize

the space and avoid stack overflow.

15. What are the advantages and disadvantages of using recursion over loops for
generating a Fibonacci series?

● Advantages of recursion:
○ Easier to write and understand certain problems.
○ More elegant and concise for problems that naturally fit a recursive solution

(e.g., tree traversal).
● Disadvantages of recursion:

○ This can lead to stack overflow for large inputs.

13

Data Structures Lab Sant Longowal Institute of Engineering and Technology

○ Higher time and space complexity due to multiple function calls and call
stack usage.

● Advantages of iteration:
○ More efficient in terms of time and space complexity.
○ It avoids the overhead of multiple function calls and uses constant space.

● Disadvantages of iteration:
○ It may be harder to conceptualize some problems compared to recursion.

16. What is memoization, and how can it be applied to optimize the recursive
Fibonacci program?

Memoization is a technique used to store the results of expensive function calls and reuse
them when the same inputs occur again, thus avoiding redundant calculations. In the
Fibonacci program, memoization can be applied by storing the results of Fibonacci (n) in
an array or hash table. Before making a recursive call, the function checks if the Fibonacci
(n) result is already stored. If it is, the function returns the stored result, avoiding redundant
calculations. This reduces the time complexity from O(2^n) to O(n).

14

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Experiment 2

Write a function that interchanges the first element with the last element, the second
element with the second last element, and so on.

#include <stdio.h>

void swapElements(int arr[], int size) {
int temp;
// Loop to swap elements
for (int i = 0; i < size / 2; i++) {

// Swap arr[i] with arr[size - i - 1]
temp = arr[i];
arr[i] = arr[size - i - 1];
arr[size - i - 1] = temp;

}
}

int main() {
int arr[] = {1, 2, 3, 4, 5, 6};
int size = sizeof(arr) / sizeof(arr[0]);

printf("Original array: ");
for (int i = 0; i < size; i++) {

printf("%d ", arr[i]);
}

// Call the function to swap elements
swapElements(arr, size);

printf("\nArray after swapping: ");
for (int i = 0; i < size; i++) {

printf("%d ", arr[i]);
}

return 0;
}

Output

Original array: 1 2 3 4 5 6
Array after swapping: 6 5 4 3 2 1

15

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Viva questions

1. How does the function swapElements work to interchange the elements of the
array?

● Expected Answer: The function loops through the first half of the array and swaps
the elements at the beginning with those at the end using a temporary variable. It
continues this process until it has reached the middle of the array.

2. Why only loop until size / 2 in the function?

● Expected Answer: We only need to loop until the middle of the array because after
swapping the first half with the second half, the entire array will be reversed.
Swapping beyond the middle would undo the changes.

3. What is the role of the temp variable in this program?

● Expected Answer: The temp variable temporarily holds the value of one of the
elements during the swap. Without it, the value of one element would be
overwritten before the swap is complete.

4. What would happen if we do not include the statement arr[size - i - 1] = temp in the
function?

● Expected Answer: Without this statement, the second element in the swap would

16

Data Structures Lab Sant Longowal Institute of Engineering and Technology

not get its correct value. The array would lose data, and the swap wouldn't be
completed properly.

5. How would the program behave if the array size is odd, for example, arr[] = {1, 2,
3, 4, 5}?

● Expected Answer: If the array has an odd size, the middle element will remain in its
place. The function only swaps elements at opposite ends and doesn't affect the
middle one, so in this case, the output will be 5 4 3 2 1, where 3 stays in the middle.

Experiment 3. WAP to multiply two Matrices.

#include <stdio.h>

#define MAX 10 // Define the maximum size of the matrix

void multiplyMatrices(int firstMatrix[MAX][MAX], int secondMatrix[MAX][MAX], int
result[MAX][MAX], int row1, int col1, int row2, int col2) {

// Initializing elements of result matrix to 0
for (int i = 0; i < row1; i++) {

for (int j = 0; j < col2; j++) {
result[i][j] = 0;

}
}

// Multiplying firstMatrix and secondMatrix and storing in result
for (int i = 0; i < row1; i++) {

for (int j = 0; j < col2; j++) {
for (int k = 0; k < col1; k++) {

result[i][j] += firstMatrix[i][k] * secondMatrix[k][j];
}

}
}

}

int main() {
int firstMatrix[MAX][MAX], secondMatrix[MAX][MAX], result[MAX][MAX];
int row1, col1, row2, col2;

// Taking input for the dimensions of the matrices
printf("Enter rows and columns for the first matrix: ");
scanf("%d %d", &row1, &col1);

17

Data Structures Lab Sant Longowal Institute of Engineering and Technology

printf("Enter rows and columns for the second matrix: ");
scanf("%d %d", &row2, &col2);

// Check if matrix multiplication is possible
if (col1 != row2) {

printf("Error: Column of the first matrix must be equal to row of the second
matrix.\n");

return 0;
}

// Taking input for the first matrix
printf("\nEnter elements of the first matrix:\n");
for (int i = 0; i < row1; i++) {

for (int j = 0; j < col1; j++) {
scanf("%d", &firstMatrix[i][j]);

}
}

// Taking input for the second matrix
printf("\nEnter elements of the second matrix:\n");
for (int i = 0; i < row2; i++) {

for (int j = 0; j < col2; j++) {
scanf("%d", &secondMatrix[i][j]);

}
}

// Function to multiply the matrices
multiplyMatrices(firstMatrix, secondMatrix, result, row1, col1, row2, col2);

// Display the result of the multiplication
printf("\nResultant matrix:\n");
for (int i = 0; i < row1; i++) {

for (int j = 0; j < col2; j++) {
printf("%d ", result[i][j]);

}
printf("\n");

}

return 0;
}

18

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Input
Enter rows and columns for the first matrix: 2 3
Enter rows and columns for the second matrix: 3 2

Enter elements of the first matrix:
1 2 3
4 5 6

Enter elements of the second matrix:
7 8
9 10
11 12

Output
Resultant matrix:
58 64
139 154

Viva questions

1. What are the conditions for two matrices to be multiplied?

● Expected Answer: To multiply two matrices, the number of columns in the first
matrix must equal the number of rows in the second matrix. If the first matrix is of
size m×nm \times nm×n and the second matrix is of size n×pn \times pn×p, the
resultant matrix will be of size m×pm \times pm×p.

2. How is the resultant matrix initialized before performing multiplication?

● Expected Answer: The resultant matrix is initialized to zero before performing
multiplication. This is done using a nested loop that sets each element of the result
matrix to zero, ensuring that any previous values do not interfere with the final
result.

3. Explain the triple nested loop used in the multiplication function.

● Expected Answer: The outer two loops iterate over the rows of the first matrix and
the columns of the second matrix, respectively. The innermost loop iterates over the
columns of the first matrix (or rows of the second matrix) to calculate the dot

19

Data Structures Lab Sant Longowal Institute of Engineering and Technology

product of the corresponding row from the first matrix and the column from the
second matrix. The products are summed up and stored in the corresponding
position in the resultant matrix.

4. What would happen if you multiply two matrices with incompatible dimensions?

● Expected Answer: If you try to multiply two matrices with incompatible
dimensions (where the number of columns in the first matrix does not equal the
number of rows in the second matrix), the program will output an error message
and terminate without performing any multiplication.

5. How can the program be modified to handle larger matrices or dynamic memory
allocation?

● Expected Answer: The program can be modified to handle larger matrices using
dynamic memory allocation with malloc to allocate memory for matrices at runtime
based on user input. This allows for greater flexibility in terms of matrix sizes.
Additionally, we would need to free the allocated memory at the end of the program
to prevent memory leaks.

Experiments 4. Write a Function that removes all duplicate elements from an Array.

#include <stdio.h>

void removeDuplicates(int arr[], int n) {
int temp[n]; // Temporary array to store unique elements
int j = 0; // Variable to store the index of unique elements

for (int i = 0; i < n; i++) {
int isDuplicate = 0;

// Check if the element is already in the temp array
for (int k = 0; k < j; k++) {

if (arr[i] == temp[k]) {
isDuplicate = 1;
break;

}
}

// If not a duplicate, add it to the temp array
if (!isDuplicate) {

20

Data Structures Lab Sant Longowal Institute of Engineering and Technology

temp[j] = arr[i];
j++;

}
}

// Copy the unique elements back to the original array
for (int i = 0; i < j; i++) {

arr[i] = temp[i];
}

// Print the array with duplicates removed
printf("Array after removing duplicates: ");
for (int i = 0; i < j; i++) {

printf("%d ", arr[i]);
}
printf("\n");

}

int main() {
int arr[] = {1, 2, 2, 3, 4, 4, 5};
int n = sizeof(arr) / sizeof(arr[0]);

removeDuplicates(arr, n);

return 0;
}

Output.
Input array int arr[] = {1, 2, 2, 3, 4, 4, 5};
Array after removing duplicates: 1 2 3 4 5

Viva Questions:

1. What is the purpose of the temporary array in this function?
○ The temporary array is used to store only the unique elements from the

original array.
2. Can you explain how the algorithm checks for duplicate elements?

○ For each element in the array, the algorithm compares it with the elements
already stored in the temporary array. If it finds a match, it marks it as a
duplicate and does not add it to the temporary array.

3. What is the time complexity of this algorithm?
○ The time complexity is O(n2)O(n^2)O(n2), where nnn is the number of

elements in the array, due to the nested loop structure used to check for
duplicates.

21

Data Structures Lab Sant Longowal Institute of Engineering and Technology

4. Can this algorithm be optimized? If so, how?
○ Yes, by using a data structure like a hash set to store unique elements, the

time complexity can be reduced to O(n).
5. What happens if the original array contains all unique elements?

○ If all elements are unique, the function will simply copy all elements to the
temporary array and return the original array without any changes.

Experiments 5

WAP that inserts an element at the beginning of the Linear Link List.

#include <stdio.h>
#include <stdlib.h>

// Define the structure for a linked list node
struct Node {

int data;
struct Node* next;

};

// Function to insert a new node at the beginning
void insertAtBeginning(struct Node** head_ref, int new_data) {

// Allocate memory for the new node
struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

// Assign data to the new node
new_node->data = new_data;

// Make the new node point to the current head
new_node->next = *head_ref;

// Move the head to point to the new node
*head_ref = new_node;

}

// Function to print the linked list
void printList(struct Node* node) {

while (node != NULL) {
printf("%d -> ", node->data);
node = node->next;

}
printf("NULL\n");

}

int main() {

22

Data Structures Lab Sant Longowal Institute of Engineering and Technology

// Initialize the linked list with an empty list
struct Node* head = NULL;

// Insert elements at the beginning
insertAtBeginning(&head, 10);
insertAtBeginning(&head, 20);
insertAtBeginning(&head, 30);

// Print the updated linked list
printf("Linked list after inserting elements at the beginning: \n");
printList(head);

return 0;
}

Explanation:

1. Node Structure: The program defines a structure Node with two fields: data to store
the element and next to point to the next node in the list.

2. insertAtBeginning Function:
○ This function creates a new node, assigns it the value (new_data), and sets its

next pointer to the current head of the list.
○ It then updates the head to point to this new node, effectively inserting the

element at the beginning.
3. printList Function: This function traverses the linked list, printing the data of each

node.
4. Main Function: Elements 30, 20, and 10 are inserted at the beginning, and the list is

printed.

23

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Viva questions.

1. What is the purpose of the insertAtBeginning function?

● Expected Answer: The insertAtBeginning function inserts a new node at the
beginning of the linked list by creating a new node, assigning data to it, and then
making it point to the current head of the list. Finally, it updates the head to point to
this new node.

2. How does the malloc function work in the context of linked lists?

● Expected Answer: The malloc function dynamically allocates memory for a new
node in the linked list. It returns a pointer to the allocated memory, which is then
assigned to the new node. This is necessary because we must allocate memory for
each node at runtime.

3. What would happen if you don't update the head pointer after inserting a new
node?

● Expected Answer: If the head pointer is not updated to point to the new node, the
linked list will lose its reference to the newly inserted node, and the list will remain
unchanged. The new node would not become the first element in the list.

4. Can you explain the time complexity of inserting an element at the beginning of a
linked list?

● Expected Answer: The time complexity of inserting an element at the beginning of
a linked list is O(1) because we only need to create a new node and adjust a few
pointers, regardless of the size of the list.

5. What is the difference between inserting at the beginning and inserting at the end
of a linked list in terms of time complexity?

● Expected Answer: Inserting at the beginning of a linked list has a time complexity
of O(1) because it only requires adjusting the head pointer. In contrast, inserting at
the end of a singly linked list has a time complexity of O(n), where N is the number
of nodes in the list because we need to traverse the list to find the last node before
inserting the new node.

24

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Experiments 6

WAP that deletes an element from the beginning of the Linear Link List.

#include <stdio.h>
#include <stdlib.h>

// Define the structure for a linked list node
struct Node {

int data;
struct Node* next;

};

// Function to delete a node from the beginning of the linked list
struct Node* deleteFromBeginning(struct Node* head) {

if (head == NULL) {
printf("List is already empty.\n");
return NULL;

}

// Store the head node temporarily
struct Node* temp = head;

// Move head to the next node
head = head->next;

// Free the old head node
free(temp);

return head;
}

// Function to push elements into the linked list (at the beginning)
void push(struct Node** head_ref, int new_data) {

// Allocate memory for the new node
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));

// Insert the data
new_node->data = new_data;

// Make the new node point to the old head
new_node->next = (*head_ref);

// Move the head to the new node
(*head_ref) = new_node;

}

// Function to print the linked list

25

Data Structures Lab Sant Longowal Institute of Engineering and Technology

void printList(struct Node* node) {
while (node != NULL) {

printf("%d -> ", node->data);
node = node->next;

}
printf("NULL\n");

}

int main() {
struct Node* head = NULL;

// Adding some elements to the list
push(&head, 10);
push(&head, 20);
push(&head, 30);

printf("Initial linked list: ");
printList(head);

// Deleting element from the beginning
head = deleteFromBeginning(head);

printf("Linked list after deletion: ");
printList(head);

return 0;
}

Output:
/tmp/4QUVNUoRH1.o
Initial linked list: 30 -> 20 -> 10 -> NULL
Linked list after deletion: 20 -> 10 -> NULL

Viva questions

1. What is a linked list, and how does it differ from an array?
a. Follow-up: Can you explain how memory allocation works in a linked list

compared to an array?
2. Explain how the deleteFromBeginning function works. What happens if the linked

list is empty?
a. Follow-up: Why is it important to free the memory of the deleted node?

3. Why do we need to update the head pointer after deleting the first node?
a. Follow-up: What would happen if we forgot to update the head pointer?

4. What is the time complexity of deleting a node from the beginning of a singly
linked list?

26

Data Structures Lab Sant Longowal Institute of Engineering and Technology

a. Follow-up: How would this differ for deletion from the end of the list?
5. What is the role of the struct in the linked list implementation, and why do we use

dynamic memory allocation (malloc) to create nodes?
a. Follow-up: What are the potential risks of not using free() correctly after

deleting nodes?

Experiments 7

WAP that deletes an element from the end of the Linear Link List.

#include <stdio.h>
#include <stdlib.h>

// Define the structure for a linked list node
struct Node {

int data;
struct Node* next;

};

// Function to delete the last node from the linked list
struct Node* deleteFromEnd(struct Node* head) {

// If the list is empty
if (head == NULL) {

printf("List is already empty.\n");
return NULL;

}

// If there is only one node in the list
if (head->next == NULL) {

free(head);
return NULL;

}

// Traverse to the second last node
struct Node* temp = head;
while (temp->next->next != NULL) {

temp = temp->next;
}

// Free the last node and update the second last node's next pointer to NULL
free(temp->next);
temp->next = NULL;

return head;
}

27

Data Structures Lab Sant Longowal Institute of Engineering and Technology

// Function to push elements into the linked list (at the beginning)
void push(struct Node** head_ref, int new_data) {

// Allocate memory for the new node
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));

// Insert the data
new_node->data = new_data;

// Make the new node point to the old head
new_node->next = (*head_ref);

// Move the head to the new node
(*head_ref) = new_node;

}

// Function to print the linked list
void printList(struct Node* node) {

while (node != NULL) {
printf("%d -> ", node->data);
node = node->next;

}
printf("NULL\n");

}

int main() {
struct Node* head = NULL;

// Adding some elements to the list
push(&head, 10);
push(&head, 20);
push(&head, 30);

printf("Initial linked list: ");
printList(head);

// Deleting the last element
head = deleteFromEnd(head);

printf("Linked list after deletion from end: ");
printList(head);

return 0;
}

Output

Initial linked list: 30 -> 20 -> 10 -> NULL
Linked list after deletion from end: 30 -> 20 -> NULL

28

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Explanation:

● deleteFromEnd: This function deletes the last node of the linked list.
○ If the list is empty, it returns NULL and prints a message.
○ If the list has only one node, it deletes that node and returns NULL (indicating

the list is now empty).
○ Otherwise, it traverses the list to find the second-to-last node, frees the last

node, and sets the second-to-last node's next pointer to NULL.
● push: This function adds new elements to the front of the list.
● printList: This function prints the elements of the list.

Viva question

1. Can you explain how the deleteFromEnd function works in this program?
● Follow-up: What is the role of the second-to-last node in the deletion process?
2. What happens if the linked list has only one node, and you try to delete the last

node using the deleteFromEnd function?
● Follow-up: How do we handle this special case in the program?
3. What is the time complexity of deleting the last node from a singly linked list, and

why?
● Follow-up: How would this change if we worked with a doubly linked list?
4. Why do we need to traverse to the second-to-last node when deleting the last node

in a singly linked list?
● Follow-up: What challenges would arise if we directly try to access the last node?
5. What is the role of dynamic memory management (malloc and free) in linked lists,

and what could happen if we do not free memory correctly after deletion?
● Follow-up: What is a memory leak, and how can it affect a program over time?

29

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Experiment 8

WAP that deletes an element after a given element of the given Linear Link List.

#include <stdio.h>
#include <stdlib.h>

// Define the structure for a linked list node
struct Node {

int data;
struct Node* next;

};

// Function to delete a node after a given element
void deleteAfter(struct Node* head, int key) {

struct Node* temp = head;

// Traverse the list to find the node with the given key
while (temp != NULL && temp->data != key) {

temp = temp->next;
}

// If the key is not present or the key is the last node, nothing to delete
if (temp == NULL || temp->next == NULL) {

printf("Element not found or no node exists after the given element.\n");
return;

}

// Store the node to be deleted
struct Node* nodeToDelete = temp->next;

// Adjust the next pointer to skip the node to be deleted
temp->next = nodeToDelete->next;

// Free the memory of the node to be deleted
free(nodeToDelete);

}

// Function to push elements into the linked list (at the beginning)
void push(struct Node** head_ref, int new_data) {

// Allocate memory for the new node
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));

// Insert the data
new_node->data = new_data;

// Make the new node point to the old head
new_node->next = (*head_ref);

30

Data Structures Lab Sant Longowal Institute of Engineering and Technology

// Move the head to the new node
(*head_ref) = new_node;

}

// Function to print the linked list
void printList(struct Node* node) {

while (node != NULL) {
printf("%d -> ", node->data);
node = node->next;

}
printf("NULL\n");

}

int main() {
struct Node* head = NULL;

// Adding some elements to the list
push(&head, 50);
push(&head, 40);
push(&head, 30);
push(&head, 20);
push(&head, 10);

printf("Initial linked list: ");
printList(head);

// Deleting the element after 30
deleteAfter(head, 30);

printf("Linked list after deletion after element 30: ");
printList(head);

return 0;
}

Output:
Initial linked list: 10 -> 20 -> 30 -> 40 -> 50 -> NULL
Linked list after deletion after element 30: 10 -> 20 -> 30 -> 50 -> NULL

Explanation:

31

Data Structures Lab Sant Longowal Institute of Engineering and Technology

● deleteAfter: This function deletes the node after the node with the specified key (key).
It checks for the existence of the key and whether there's a node after it. If found, it
adjusts the links to skip the node and frees its memory.

● push: Adds elements to the front of the linked list.
● printList: Prints the elements in the linked list.

Viva questions

1. How does the deleteAfter function work, and what are the key steps involved in
deleting a node after a given element?

○ Follow-up: What happens if the node with the given key is not found or if it
is the last node?

2. Why do we need to traverse the list to find the node with the given key before
deleting the node after it?

○ Follow-up: How would this process differ in a doubly linked list?
3. What is the time complexity of the deleteAfter function, and why?

○ Follow-up: Would the time complexity change if the key was located at the
end of the list?

4. What happens to the deleted node's memory, and why is it important to free it after
deletion?

○ Follow-up: What issues can arise if we forget to free the memory of the
deleted node?

5. What is the role of the temp pointer in the deleteAfter function, and why is it
necessary to adjust the next pointers during the deletion?

○ Follow-up: What would happen if the next pointer of the current node was
not updated correctly?

Experiment 9

WAP that reverses the element of the Linear Link List.

#include <stdio.h>
#include <stdlib.h>

// Define the structure for a linked list node
struct Node {

int data;
struct Node* next;

};

// Function to push a new node at the beginning of the linked list

32

Data Structures Lab Sant Longowal Institute of Engineering and Technology

void push(struct Node** head_ref, int new_data) {
struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
new_node->data = new_data;
new_node->next = (*head_ref);
(*head_ref) = new_node;

}

// Function to reverse the linked list
void reverse(struct Node** head_ref) {

struct Node* prev = NULL;
struct Node* current = *head_ref;
struct Node* next = NULL;
while (current != NULL) {

next = current->next; // Store the next node
current->next = prev; // Reverse the current node's pointer
prev = current; // Move the prev and current pointers one step forward
current = next;

}
*head_ref = prev; // Update the head to point to the new first node

}

// Function to print the linked list
void printList(struct Node* node) {

while (node != NULL) {
printf("%d -> ", node->data);
node = node->next;

}
printf("NULL\n");

}

// Main function to test the reverse function
int main() {

struct Node* head = NULL;

// Create a linked list 1 -> 2 -> 3 -> 4 -> 5 -> NULL
push(&head, 5);
push(&head, 4);
push(&head, 3);
push(&head, 2);
push(&head, 1);

printf("Original linked list:\n");
printList(head);

reverse(&head);

printf("Reversed linked list:\n");
printList(head);

33

Data Structures Lab Sant Longowal Institute of Engineering and Technology

return 0;
}

Output:
Original linked list:
1 -> 2 -> 3 -> 4 -> 5 -> NULL
Reversed linked list:
5 -> 4 -> 3 -> 2 -> 1 -> NULL

Explanation:

1. Node Structure: The linked list comprises nodes, and each node contains integer data
and a pointer to the next node.

2. push() Function: This function adds a node to the beginning of the linked list.
3. reverse() Function: This function reverses the linked list by changing the direction of

the pointers between the nodes.
4. printList() Function: This function prints the elements of the linked list.
5. Main: In the main() function, we create a linked list, reverse it, and then print both the

original and reversed lists.

Viva questions

1. What is a linked list, and how does it differ from an array?
● Expected Answer: A linked list is a data structure consisting of nodes where

each node contains data and a reference (or pointer) to the next node in the
sequence. Unlike arrays, linked lists allow dynamic memory allocation,
making them more efficient for operations like insertions and deletions.
Still, they do not provide direct access to elements by index-like arrays.

2. Explain the process of reversing a singly linked list.
● Expected Answer: To reverse a singly linked list, we need to iterate through

the list and change the direction of the pointers for each node. We maintain
three pointers: prev, current, and next. Initially, prev is set to NULL, and we
iterate through the list while making each node's next pointer point to the
previous node. At the end of the iteration, prev becomes the new head of the
reversed list.

3. What is the time complexity of reversing a linked list, and why?
● Expected Answer: The time complexity of reversing a linked list is O(n),

where n is the number of nodes. This is because we have to traverse each
node once to reverse the direction of the pointers.

4. Can we reverse a linked list using recursion? If yes, how?
● Expected Answer: Yes, we can reverse a linked list using recursion. In a

recursive approach, we recursively move to the last node and adjust the next
pointers backward. Each node's next pointer is set to its previous node, and

34

Data Structures Lab Sant Longowal Institute of Engineering and Technology

the base case is when the function reaches the last node (where the current
node's next is NULL).

5. What is the difference between a singly linked list and a doubly linked list?
● Expected Answer: In a singly linked list, each node contains data and a

pointer to the next node in the list. In a doubly linked list, each node
contains data, a pointer to the next node, and a pointer to the previous node.
A doubly linked list allows traversal in both directions (forward and
backward), while a singly linked list only allows forward traversal.

Experiments 10.

WAP that concatenates two Linear Linked lists.

#include <stdio.h>
#include <stdlib.h>

// Node structure
struct Node {

int data;
struct Node* next;

};

// Function to create a new node
struct Node* createNode(int data) {

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = data;
newNode->next = NULL;
return newNode;

}

// Function to insert a node at the end of a linked list
void insertNode(struct Node** head, int data) {

struct Node* newNode = createNode(data);
if (*head == NULL) {

*head = newNode;
return;

}
struct Node* temp = *head;
while (temp->next != NULL) {

temp = temp->next;
}
temp->next = newNode;

}

35

Data Structures Lab Sant Longowal Institute of Engineering and Technology

// Function to display the linked list
void displayList(struct Node* head) {

while (head != NULL) {
printf("%d -> ", head->data);
head = head->next;

}
printf("NULL\n");

}

// Function to concatenate two linked lists
void concatenateLists(struct Node** head1, struct Node* head2) {

if (*head1 == NULL) {
*head1 = head2;
return;

}
struct Node* temp = *head1;
while (temp->next != NULL) {

temp = temp->next;
}
temp->next = head2;

}

// Main function
int main() {

struct Node* list1 = NULL;
struct Node* list2 = NULL;

// Insert elements in the first linked list
insertNode(&list1, 10);
insertNode(&list1, 20);
insertNode(&list1, 30);

// Insert elements in the second linked list
insertNode(&list2, 40);
insertNode(&list2, 50);
insertNode(&list2, 60);

printf("List 1: ");
displayList(list1);

printf("List 2: ");
displayList(list2);

// Concatenate the lists
concatenateLists(&list1, list2);

printf("Concatenated List: ");
displayList(list1);

36

Data Structures Lab Sant Longowal Institute of Engineering and Technology

return 0;
}

Output:
List 1: 10 -> 20 -> 30 -> NULL
List 2: 40 -> 50 -> 60 -> NULL
Concatenated List: 10 -> 20 -> 30 -> 40 -> 50 -> 60 -> NULL

Viva questions

1. What is a Linked List? How is it different from an array?
○ A linked list is a linear data structure storing elements in nodes, and each

node points to the next node. In an array, memory is allocated contiguously,
whereas in a linked list, memory is dynamically allocated and may not be
contiguous. Linked lists offer dynamic size and easier insertion/deletion at
any position than arrays.

2. What are the types of Linked Lists?
○ The three common types of linked lists are:

■ Singly Linked List: Each node contains a data part and a pointer to
the next node.

■ Doubly Linked List: Each node contains a data part, a pointer to the
next node, and a pointer to the previous node.

■ Circular Linked List: In this list, the last node points back to the
first node, forming a circular structure.

3. How does the concatenation of two linked lists work?
○ To concatenate two linked lists, the pointer of the last node of the first list is

updated to point to the head node of the second list. The second list is
appended to the end of the first one.

4. What are the advantages and disadvantages of using a linked list over an array?
○ Advantages:

■ Dynamic memory allocation (no predefined size).
■ Efficient insertion and deletion (no need to shift elements).

○ Disadvantages:
■ Random access is not possible; elements must be accessed

sequentially.
■ Extra memory is required for storing pointers.

5. What is the time complexity of concatenating two singly linked lists?
○ The time complexity is O(n), where n is the length of the first list. You need

to traverse the first list to reach its last node, then link it to the head of the

37

Data Structures Lab Sant Longowal Institute of Engineering and Technology

second list. Traversing the second list is not required.

Experiments 11

WAP to remove the Top element of the Stack.

#include <stdio.h>
#include <stdlib.h>

#define MAX 100

// Stack structure definition
struct Stack {

int data[MAX];
int top;

};

// Function to initialize the stack
void initStack(struct Stack *s) {

s->top = -1;
}

// Function to check if the stack is empty
int isEmpty(struct Stack *s) {

return s->top == -1;
}

// Function to check if the stack is full
int isFull(struct Stack *s) {

return s->top == MAX - 1;
}

// Function to push an element onto the stack
void push(struct Stack *s, int value) {

if (isFull(s)) {
printf("Stack overflow!\n");
return;

}
s->data[++(s->top)] = value;
printf("%d pushed to stack\n", value);

}

// Function to remove the top element from the stack
void pop(struct Stack *s) {

if (isEmpty(s)) {

38

Data Structures Lab Sant Longowal Institute of Engineering and Technology

printf("Stack is empty, nothing to pop!\n");
return;

}
printf("Popped element: %d\n", s->data[(s->top)--]);

}

// Function to display the current stack
void display(struct Stack *s) {

if (isEmpty(s)) {
printf("Stack is empty!\n");
return;

}
printf("Stack elements: ");
for (int i = 0; i <= s->top; i++) {

printf("%d ", s->data[i]);
}
printf("\n");

}

int main() {
struct Stack s;
initStack(&s);

push(&s, 10);
push(&s, 20);
push(&s, 30);
display(&s);

// Remove the top element
pop(&s);
display(&s);

return 0;
}

Output:

39

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Explanation:

1. initStack: Initializes the stack with a top pointer set to -1.
2. isEmpty: Checks if the stack is empty by checking if top is -1.
3. isFull: Checks if the stack is full by comparing top with MAX-1.
4. push: Adds a new element to the stack if it’s not full.
5. pop: Removes the top element from the stack if it’s not empty.
6. display: Displays all elements in the stack.

Viva Questions:

1. What is the significance of the top variable in a stack?
○ The top variable indicates the index of the current top element in the stack.

2. What happens if you try to pop an element from an empty stack?
○ It results in "Stack Underflow," meaning there are no elements to remove.

3. What is the time complexity of the push and pop operations in this stack
implementation?

○ Both push and pop operations have a time complexity of O(1) because
they involve simple index manipulation.

4. How would you modify this program to implement a stack using a dynamic array
instead of a fixed-size array?

○ By dynamically allocating memory using malloc and resizing the array

40

Data Structures Lab Sant Longowal Institute of Engineering and Technology

using realloc when the stack grows beyond the current size.
5. What is the difference between stack overflow and stack underflow?

○ Stack overflow occurs when attempting to push an element onto a full
stack, while stack underflow occurs when trying to pop an element from an
empty stack.

Experiment 12

WAP to insert (or push) an element at the Top of the Stack.

#include <stdio.h>
#include <stdlib.h>

#define MAX 100

// Stack structure definition
struct Stack {

int data[MAX];
int top;

};

// Function to initialize the stack
void initStack(struct Stack *s) {

s->top = -1;
}

// Function to check if the stack is full
int isFull(struct Stack *s) {

return s->top == MAX - 1;
}

// Function to check if the stack is empty
int isEmpty(struct Stack *s) {

return s->top == -1;
}

// Function to push an element onto the stack
void push(struct Stack *s, int value) {

if (isFull(s)) {
printf("Stack overflow!\n");
return;

}
s->data[++(s->top)] = value;
printf("%d pushed to stack\n", value);

41

Data Structures Lab Sant Longowal Institute of Engineering and Technology

}

// Function to display the current stack
void display(struct Stack *s) {

if (isEmpty(s)) {
printf("Stack is empty!\n");
return;

}
printf("Stack elements: ");
for (int i = 0; i <= s->top; i++) {

printf("%d ", s->data[i]);
}
printf("\n");

}

int main() {
struct Stack s;
initStack(&s);

// Pushing elements to stack
push(&s, 10);
push(&s, 20);
push(&s, 30);

// Display current stack
display(&s);

return 0;
}
Output:

42

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Viva questions

1. What is the difference between a Stack and a Queue?
○ A Stack follows the LIFO (Last-In-First-Out) principle, meaning the last

element inserted is the first to be removed.
○ A Queue follows the FIFO (First-In-First-Out) principle, meaning the first

element inserted is the first to be removed.
2. How can you prevent Stack Overflow?

○ A stack overflow occurs when you try to push an element onto a stack that
is already full. Always check if the stack is full using an isFull() function
before pushing an element to prevent this.

3. What is the time complexity of the push operation?
○ The time complexity of the push operation is O(1) because it only involves

updating the top pointer and inserting the element.
4. What are the limitations of using an array-based stack?

○ An array-based stack has a fixed size, meaning once the stack is full, no
more elements can be added (stack overflow). This limitation can be
overcome by using a dynamic structure like a linked list for the stack.

5. What is the primary application of a stack in recursion?
○ In recursion, the function calls are stored in a call stack. When a function is

called, its data is pushed onto the stack. When the function returns, the data
is popped from the stack. This allows recursive functions to return control
back to the previous function.

Experiments 13

WAP to insert an element at the end of the queue.

#include <stdio.h>
#define MAX 100

// Queue structure definition
struct Queue {

int data[MAX];
int front;
int rear;

};

43

Data Structures Lab Sant Longowal Institute of Engineering and Technology

// Function to initialize the queue
void initQueue(struct Queue *q) {

q->front = -1;
q->rear = -1;

}

// Function to check if the queue is full
int isFull(struct Queue *q) {

return q->rear == MAX - 1;
}

// Function to check if the queue is empty
int isEmpty(struct Queue *q) {

return q->front == -1 || q->front > q->rear;
}

// Function to insert an element at the end of the queue
void enqueue(struct Queue *q, int value) {

if (isFull(q)) {
printf("Queue overflow!\n");
return;

}
if (isEmpty(q)) {

q->front = 0;
}
q->data[++(q->rear)] = value;
printf("%d inserted into the queue\n", value);

}

// Function to display the current queue
void display(struct Queue *q) {

if (isEmpty(q)) {
printf("Queue is empty!\n");
return;

}
printf("Queue elements: ");
for (int i = q->front; i <= q->rear; i++) {

printf("%d ", q->data[i]);
}
printf("\n");

}

int main() {
struct Queue q;
initQueue(&q);

// Enqueue elements into the queue
enqueue(&q, 10);

44

Data Structures Lab Sant Longowal Institute of Engineering and Technology

enqueue(&q, 20);
enqueue(&q, 30);

// Display current queue
display(&q);

return 0;
}

Output:
10 inserted into the queue
20 inserted into the queue
30 inserted into the queue
Queue elements: 10 20 30

Viva Questions:

1. What is the difference between a Queue and a Stack?
○ A Queue follows the FIFO (First-In-First-Out) principle, meaning the first

element inserted is the first to be removed. A Stack follows the LIFO
(Last-In-First-Out) principle, where the last element inserted is the first to
be removed.

2. What is the time complexity of the enqueue operation?
○ The time complexity of the enqueue operation is O(1) because it only

involves updating the rear pointer and adding the element at the end.
3. What happens when you try to insert an element into a full queue?

○ If you try to insert an element into a full queue, the operation fails and
results in a queue overflow. Before attempting to enqueue an element, you
should check if the queue is full using the isFull() function.

4. What are the types of queues?
○ There are several types of queues: simple queue (linear queue), circular

queue, priority queue, and double-ended queue (deque).
5. How is a queue different from a circular queue?

○ In a queue, once the rear reaches the end of the array, no more elements can
be added, even if spaces are at the front. In a circular queue, the rear can
wrap around to the front of the array (circular fashion), allowing better
space utilization.

45

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Experiment 14

WAP to remove the first element of the queue.

#include <stdio.h>
#define MAX 100

// Queue structure definition
struct Queue {

int data[MAX];
int front;
int rear;

};

// Function to initialize the queue
void initQueue(struct Queue *q) {

q->front = -1;
q->rear = -1;

}

// Function to check if the queue is empty
int isEmpty(struct Queue *q) {

return q->front == -1 || q->front > q->rear;
}

// Function to remove the first element of the queue (dequeue)
void dequeue(struct Queue *q) {

if (isEmpty(q)) {
printf("Queue underflow! Cannot dequeue.\n");
return;

}
printf("Removed element: %d\n", q->data[q->front++]);

// Reset the queue if it's empty after dequeue
if (q->front > q->rear) {

q->front = q->rear = -1;
}

}

// Function to insert an element at the end of the queue (enqueue)
void enqueue(struct Queue *q, int value) {

if (q->rear == MAX - 1) {
printf("Queue overflow!\n");
return;

}
if (q->front == -1) {

q->front = 0;
}

46

Data Structures Lab Sant Longowal Institute of Engineering and Technology

q->data[++(q->rear)] = value;
}

// Function to display the current queue
void display(struct Queue *q) {

if (isEmpty(q)) {
printf("Queue is empty!\n");
return;

}
printf("Queue elements: ");
for (int i = q->front; i <= q->rear; i++) {

printf("%d ", q->data[i]);
}
printf("\n");

}

int main() {
struct Queue q;
initQueue(&q);

// Enqueue elements into the queue
enqueue(&q, 10);
enqueue(&q, 20);
enqueue(&q, 30);

// Display current queue
display(&q);

// Dequeue the first element
dequeue(&q);

// Display current queue after dequeue
display(&q);

return 0;
}

Output:
Queue elements: 10 20 30
Removed element: 10
Queue elements: 20 30

Explanation:

1. initQueue: Initializes the queue with front and rear pointers set to -1.
2. isEmpty: Checks if the queue is empty by verifying if front is -1 or front > rear.

47

Data Structures Lab Sant Longowal Institute of Engineering and Technology

3. dequeue: Removes the first element from the queue by incrementing the front pointer.
If the queue becomes empty after dequeuing, it resets both front and rear to -1.

4. enqueue: Adds an element to the end of the queue if it’s not full.
5. display: Displays all the elements currently in the queue.

Viva Questions:

1. What is the difference between enqueue and dequeue operations in a queue?
○ Enqueue inserts an element at the rear (end) of the queue, while dequeue

removes the element from the front (start) of the queue.
2. What happens when you try to dequeue an element from an empty queue?

○ Trying to dequeue an element from an empty queue results in a queue
underflow, meaning no elements are left to remove.

3. What is the time complexity of the dequeue operation?
○ The time complexity of the dequeue operation is O(1), as it only involves

incrementing the front pointer and checking conditions.
4. What are the real-world examples of a queue?

○ Some real-world examples of a queue are:
■ Waiting in line at a bank or a movie theater.
■ Job scheduling in operating systems.
■ Print queue in a printer.

5. How is memory managed in a simple queue implementation using arrays?
○ In a simple queue, memory is allocated as a fixed-size array. No more

elements can be added once the rear reaches the maximum array size.
Memory is not reused unless a circular queue is implemented.

Experiment 15

WAP to remove the first element of the queue.

#include <stdio.h>
#include <stdlib.h>

#define MAX 100 // Maximum size of the queue

// Queue structure
typedef struct {

int items[MAX];
int front;
int rear;

} Queue;

48

Data Structures Lab Sant Longowal Institute of Engineering and Technology

// Function to initialize the queue
void initialize(Queue* q) {

q->front = -1;
q->rear = -1;

}

// Function to check if the queue is empty
int isEmpty(Queue* q) {

return q->front == -1;
}

// Function to check if the queue is full
int isFull(Queue* q) {

return q->rear == MAX - 1;
}

// Function to insert an element into the queue
void enqueue(Queue* q, int value) {

if (isFull(q)) {
printf("Queue Overflow! Unable to enqueue %d\n", value);
return;

}
if (q->front == -1) {

q->front = 0; // Set front to 0 when the first element is inserted
}
q->items[++(q->rear)] = value;
printf("%d enqueued to queue\n", value);

}

// Function to remove the first element from the queue
int dequeue(Queue* q) {

if (isEmpty(q)) {
printf("Queue Underflow! No element to dequeue\n");
return -1;

}
int removedElement = q->items[q->front];

// If there's only one element in the queue, reset front and rear
if (q->front == q->rear) {

q->front = q->rear = -1;
} else {

q->front++;
}

return removedElement;
}

// Function to display the queue
void display(Queue* q) {

49

Data Structures Lab Sant Longowal Institute of Engineering and Technology

if (isEmpty(q)) {
printf("Queue is empty\n");
return;

}
printf("Queue elements: ");
for (int i = q->front; i <= q->rear; i++) {

printf("%d ", q->items[i]);
}
printf("\n");

}

// Main function
int main() {

Queue q;
initialize(&q);

enqueue(&q, 10);
enqueue(&q, 20);
enqueue(&q, 30);
enqueue(&q, 40);

display(&q); // Display queue before dequeuing

int removedElement = dequeue(&q); // Remove the first element
if (removedElement != -1) {

printf("Removed first element: %d\n", removedElement);
}

display(&q); // Display queue after dequeuing

return 0;
}

Output.
10 enqueued to queue
20 enqueued to queue
30 enqueued to queue
40 enqueued to queue
Queue elements: 10 20 30 40
Removed first element: 10
Queue elements: 20 30 40

50

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Viva Questions:

1. What is the difference between front and rear in a queue?
○ front represents the index of the first element, while rear represents the

index of the last element in the queue.
2. What happens if you try to dequeue an element from an empty queue?

○ It results in "Queue Underflow," meaning there are no elements to remove
from the queue.

3. What is the time complexity of the enqueue and dequeue operations in this
queue implementation?

○ Both enqueue and dequeue operations have a time complexity of
O(1)O(1)O(1) because they involve simple index manipulations.

4. How would you implement a circular queue using this array-based queue structure?
○ By modifying the enqueue and dequeue functions to wrap around the

array using the modulo operator, i.e., (rear + 1) % MAX.
5. What is the primary difference between a stack and a queue?

○ A stack follows the LIFO (Last In, First Out) principle, while a queue
follows the FIFO (First In, First Out) principle.

Experiment 16

WAP to illustrate the implementation of Binary Search Tree.

#include <stdio.h>
#include <stdlib.h>

// Structure for a tree node
struct Node {

int data;
struct Node* left;
struct Node* right;

};

// Function to create a new node
struct Node* createNode(int data) {

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = data;
newNode->left = NULL;
newNode->right = NULL;
return newNode;

}

// Function to insert a new node in the BST
struct Node* insert(struct Node* root, int data) {

51

Data Structures Lab Sant Longowal Institute of Engineering and Technology

if (root == NULL) {
return createNode(data);

}
if (data < root->data) {

root->left = insert(root->left, data);
} else {

root->right = insert(root->right, data);
}
return root;

}

// Function to perform inorder traversal of the BST
void inorderTraversal(struct Node* root) {

if (root != NULL) {
inorderTraversal(root->left);
printf("%d ", root->data);
inorderTraversal(root->right);

}
}

// Function to search for a value in the BST
struct Node* search(struct Node* root, int data) {

if (root == NULL || root->data == data) {
return root;

}
if (data < root->data) {

return search(root->left, data);
} else {

return search(root->right, data);
}

}

int main() {
struct Node* root = NULL;

// Inserting nodes into the BST
root = insert(root, 15);
insert(root, 10);
insert(root, 20);
insert(root, 8);
insert(root, 12);
insert(root, 17);
insert(root, 25);

// Inorder traversal of the BST
printf("Inorder traversal of the BST:\n");
inorderTraversal(root);
printf("\n");

52

Data Structures Lab Sant Longowal Institute of Engineering and Technology

// Searching for a value in the BST
int searchValue = 10;
struct Node* result = search(root, searchValue);
if (result != NULL) {

printf("Value %d found in the BST.\n", searchValue);
} else {

printf("Value %d not found in the BST.\n", searchValue);
}

return 0;
}
Output:

Explanation:

1. Node Structure: Each node has data, a pointer to the left child, and a pointer to the
right child.

2. createNode: Allocates memory for a new node and initializes its data and pointers.
3. insert: Recursively inserts a new value into the BST. If the tree is empty, it creates a

new node; otherwise, it finds the correct position based on the value.
4. inorderTraversal: Prints the values of the BST in ascending order.

53

Data Structures Lab Sant Longowal Institute of Engineering and Technology

5. search: Searches for a specific value in the BST and returns the node if found.
6. main: Demonstrates insertion of nodes, performs inorder traversal, and searches for a

specific value.

Experiment 17.

WAP to sort an array of integers in ascending order using Bubble Sort.

#include <stdio.h>

// Function to perform bubble sort
void bubbleSort(int arr[], int n) {

int i, j, temp;
for (i = 0; i < n - 1; i++) {

for (j = 0; j < n - i - 1; j++) {
// Swap if the current element is greater than the next element
if (arr[j] > arr[j + 1]) {

temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;

}
}

}
}

// Function to print the array
void printArray(int arr[], int n) {

int i;
for (i = 0; i < n; i++) {

printf("%d ", arr[i]);
}
printf("\n");

}

int main() {
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr) / sizeof(arr[0]);

printf("Original array: \n");
printArray(arr, n);

bubbleSort(arr, n);

printf("Sorted array in ascending order: \n");
printArray(arr, n);

54

Data Structures Lab Sant Longowal Institute of Engineering and Technology

return 0;
}

Output:

Viva Questions:

1. How does Bubble Sort work?
○ Bubble Sort works by repeatedly swapping adjacent elements if they are in

the wrong order. The largest unsorted element "bubbles up" to its correct
position in each pass.

2. What is the time complexity of Bubble Sort?
○ The time complexity of Bubble Sort is O(n²) in the worst and average cases,

where n is the number of elements in the array.
3. Can Bubble Sort be optimized?

○ Yes, if no elements are swapped in a pass, it means the array is already
sorted, and further passes are unnecessary. This can be checked using a flag,
reducing unnecessary iterations.

4. What is the space complexity of Bubble Sort?

55

Data Structures Lab Sant Longowal Institute of Engineering and Technology

○ The space complexity of Bubble Sort is O(1), since it only requires a
constant amount of extra space (i.e., the swap variable).

5. What are the limitations of Bubble Sort?
○ Bubble Sort is inefficient for large datasets because of its quadratic time

complexity. It's mainly used for educational purposes or when the dataset is
small and nearly sorted.

Experiment 18

WAP to sort an array of integers in ascending order using Insertion Sort.

#include <stdio.h>

// Function to perform insertion sort
void insertionSort(int arr[], int n) {

int i, key, j;
for (i = 1; i < n; i++) {

key = arr[i];
j = i - 1;

// Move elements of arr[0..i-1], that are greater than key, to one position ahead
// of their current position
while (j >= 0 && arr[j] > key) {

arr[j + 1] = arr[j];
j = j - 1;

}
arr[j + 1] = key;

}
}

// Function to print the array
void printArray(int arr[], int n) {

int i;
for (i = 0; i < n; i++) {

printf("%d ", arr[i]);
}
printf("\n");

}

int main() {
int arr[] = {12, 11, 13, 5, 6};
int n = sizeof(arr) / sizeof(arr[0]);

56

Data Structures Lab Sant Longowal Institute of Engineering and Technology

printf("Original array: \n");
printArray(arr, n);

insertionSort(arr, n);

printf("Sorted array in ascending order: \n");
printArray(arr, n);

return 0;
}

Output:

Original array:
12 11 13 5 6
Sorted array in ascending order:
5 6 11 12 13

Viva Questions:

1. How does Insertion Sort work?
○ Insertion Sort works by dividing the array into a sorted and an unsorted part.

It picks elements from the unsorted part individually and places them
correctly in the sorted part.

2. What is the time complexity of Insertion Sort?
○ The time complexity of Insertion Sort is O(n²) in the worst and average

cases and O(n) in the best case (when the array is already sorted).
3. What is the space complexity of Insertion Sort?

○ The space complexity is O(1) because it requires constant extra space.
4. When is Insertion Sort preferred over other sorting algorithms?

○ Insertion Sort is preferred when the dataset is small or nearly sorted since its
best-case time complexity is O(n).

5. How is Insertion Sort different from Bubble Sort?
○ Insertion Sort places each element in its correct position right from the

beginning, while Bubble Sort compares adjacent elements and swaps them.
Insertion Sort tends to be more efficient than Bubble Sort, especially for
small or partially sorted datasets.

57

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Experiment 19.

WAP to sort an array of integer in Ascending Order using Quick Sort.

#include <stdio.h>

// Function to swap two elements
void swap(int* a, int* b) {

int temp = *a;
*a = *b;
*b = temp;

}

// Function to partition the array
int partition(int arr[], int low, int high) {

int pivot = arr[high]; // Choosing the last element as pivot
int i = (low - 1); // Index of smaller element

for (int j = low; j < high; j++) {
// If the current element is smaller than or equal to the pivot
if (arr[j] <= pivot) {

i++; // Increment index of smaller element
swap(&arr[i], &arr[j]);

}
}
swap(&arr[i + 1], &arr[high]); // Swap the pivot element with the element at i + 1
return (i + 1); // Return the partitioning index

}

// Function to implement Quick Sort
void quickSort(int arr[], int low, int high) {

if (low < high) {
// Partitioning index
int pi = partition(arr, low, high);

// Recursively sort elements before and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}
}

// Function to print the array
void printArray(int arr[], int size) {

for (int i = 0; i < size; i++) {
printf("%d ", arr[i]);

58

Data Structures Lab Sant Longowal Institute of Engineering and Technology

}
printf("\n");

}

int main() {
int arr[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(arr) / sizeof(arr[0]);

printf("Original array:\n");
printArray(arr, n);

quickSort(arr, 0, n - 1);

printf("Sorted array in ascending order:\n");
printArray(arr, n);

return 0;
}

Output:
Original array:
10 7 8 9 1 5
Sorted array in ascending order:
1 5 7 8 9 10

Explanation:

1. swap: A helper function that swaps two integers in the array.
2. partition: This function selects a pivot (the last element) and rearranges the array of

elements, placing all smaller elements to the left of the pivot and all larger elements to
the right. It returns the final position of the pivot.

3. quickSort: This recursive function applies the QuickSort algorithm. It partitions the
array and recursively sorts the sub-arrays.

4. printArray: A utility function to print the elements of the array.
5. main: Initializes an array, prints it, calls the quickSort function, and then prints the

sorted array.

Viva Questions:

1. What is Quick Sort?
○ Quick Sort is a divide-and-conquer sorting algorithm that selects a 'pivot'

element and partitions the array into two sub-arrays: elements less than the

59

Data Structures Lab Sant Longowal Institute of Engineering and Technology

pivot and elements greater than the pivot. It then recursively sorts the
sub-arrays.

2. What is the average and worst-case time complexity of Quick Sort?
○ The average-case time complexity of Quick Sort is O(n log n), while the

worst-case time complexity is O(n²), which occurs when the smallest or
largest element is always chosen as the pivot.

3. What is the role of the pivot in Quick Sort?
○ The pivot is an element used to partition the array into sub-arrays. Its

position determines the division of elements into those less than or equal to
the pivot and those greater than the pivot.

4. How does Quick Sort compare to other sorting algorithms like Merge Sort and
Bubble Sort?

○ Quick Sort is generally faster than Bubble Sort, which has a time
complexity of O(n²), and it performs well in practice compared to Merge
Sort, which has a consistent O(n log n) time complexity but requires
additional space for the temporary arrays used during merging.

5. Can Quick Sort be implemented iteratively? If so, how?
○ Yes, Quick Sort can be implemented iteratively using an explicit stack to

hold the sub-arrays low and high indices instead of recursion. This avoids
the potential risk of stack overflow with large arrays.

Experiment 20.

WAP to search an element using the Linear Search Method.

#include <stdio.h>

// Function to perform linear search
int linearSearch(int arr[], int n, int target) {

for (int i = 0; i < n; i++) {
// Check if the current element is equal to the target
if (arr[i] == target) {

return i; // Return the index if found
}

}
return -1; // Return -1 if not found

}

int main() {
int arr[] = {34, 78, 12, 90, 23, 56};
int n = sizeof(arr) / sizeof(arr[0]);
int target;

printf("Enter the element to search: ");
scanf("%d", &target);

60

Data Structures Lab Sant Longowal Institute of Engineering and Technology

int result = linearSearch(arr, n, target);

if (result != -1) {
printf("Element %d found at index %d.\n", target, result);

} else {
printf("Element %d not found in the array.\n", target);

}

return 0;
}

Viva Questions:

1. What is Linear Search?
○ Linear Search is a simple search algorithm that checks each list element

sequentially until the desired element is found or the list ends.
2. What is the time complexity of Linear Search?

○ The time complexity of Linear Search is O(n), where n is the number of

61

Data Structures Lab Sant Longowal Institute of Engineering and Technology

elements in the array. In the worst case, every element must be checked.
3. What are the advantages of Linear Search?

○ Linear Search is easy to implement, works on sorted and unsorted arrays,
and does not require additional memory for data structures.

4. When would you prefer Linear Search over more complex algorithms like Binary
Search?

○ Linear Search is preferred when dealing with small datasets or when the
array is unsorted. Binary Search is more efficient for sorted arrays with a
time complexity of O(log n).

5. What are the limitations of Linear Search?
○ The main limitation is its inefficiency for large datasets, which may require

checking every element in the worst case, leading to longer search times
than more efficient algorithms like Binary Search.

Experiment 20

WAP to search an element using the Binary Search Method.

#include <stdio.h>

// Function to perform binary search
int binarySearch(int arr[], int size, int target) {

int left = 0; // Starting index
int right = size - 1; // Ending index

while (left <= right) {
int mid = left + (right - left) / 2; // Calculate middle index

// Check if the target is present at mid
if (arr[mid] == target) {

return mid; // Return index if found
}
// If target is greater, ignore left half
else if (arr[mid] < target) {

left = mid + 1;
}
// If target is smaller, ignore right half
else {

right = mid - 1;
}

}
return -1; // Return -1 if not found

}

int main() {

62

Data Structures Lab Sant Longowal Institute of Engineering and Technology

int arr[] = {12, 23, 34, 56, 78, 90}; // Array must be sorted
int n = sizeof(arr) / sizeof(arr[0]);
int target;

printf("Enter the element to search: ");
scanf("%d", &target);

int result = binarySearch(arr, n, target);

if (result != -1) {
printf("Element %d found at index %d.\n", target, result);

} else {
printf("Element %d not found in the array.\n", target);

}

return 0;
}

63

Data Structures Lab Sant Longowal Institute of Engineering and Technology

Viva Questions:

1. What is Binary Search?
○ Binary Search is a search algorithm that finds the position of a target value

within a sorted array. It works by repeatedly dividing the search interval in
half.

2. What is the time complexity of Binary Search?
○ The time complexity of Binary Search is O(log n), where n is the number of

elements in the array. This makes it much more efficient than linear search
for large datasets.

3. What are the prerequisites for using Binary Search?
○ The array must be sorted in ascending or descending order before

performing Binary Search.
4. How does Binary Search differ from Linear Search?

○ Binary Search divides the array into halves and eliminates one half from
consideration at each step, while Linear Search checks each element
sequentially.

5. What are the limitations of Binary Search?
○ The main limitation is that it requires the array to be sorted. Additionally,

for very small arrays, the overhead of calculating midpoints and maintaining
indices may not justify using Binary Search over Linear Search.

64

