
Data Structures Sant Longowal Institute of Engineering and Technology

Course Material for Data Structure

Subject Code: CS215

Class: ICD III Semester

DEPARTMENT
OF

COMPUTER SCIENCE AND ENGINEERING

1

Data Structures Sant Longowal Institute of Engineering and Technology

CERTIFICATE

This is to certify that this manual is a bonafide record of Course Material for Data Structure in
the Data Structure in 3rd Semester of II Year ICD (CSE) program during the academic year
2024-24. This book was prepared by Dr. Amar Nath (Assistant Professor), Department of
Computer Science and Engineering.

BY

Dr. Amar Nath

AP, CSE, SLIET LONGOWAL

PREFACE

2

Data Structures Sant Longowal Institute of Engineering and Technology

This "Data Structures" Course Material is crafted to provide a comprehensive understanding
of data structure design and analysis, with a focus on practical implementation using the C
programming language. It assumes that readers have a foundational knowledge of C and similar
procedural languages. Data structures have become a pivotal component in the IT industry,
especially in areas like system-level software development.

The material is tailored to enhance procedural programming skills and is enriched with numerous
exercises and their solutions, ensuring that students can grasp the concepts quickly and
effectively. It serves as a valuable resource for Computer Science and Engineering students,
aiding in the practical understanding of data structures. Feedback and suggestions from readers
are highly appreciated to improve future editions, as continual refinement is essential for
providing the best learning experience.

BY

Dr. Amar Nath

AP, CSE, SLIET LONGOWAL

3

Data Structures Sant Longowal Institute of Engineering and Technology

ACKNOWLEDGEMENT

It was a wonderful experience working on the “Course Material for Data Structure”. First, I
would like to express my sincere gratitude to Prof. Birmohan, Head of the Department of
Computer Science and Engineering, for his continuous support and technical guidance in
preparing this document. I am deeply indebted and would like to acknowledge the invaluable
support and patronage of Prof. Mani Kant Paswan, Director of the institute, for providing me
with this excellent opportunity and his constant encouragement throughout the process. Finally, I
extend my heartfelt thanks to the entire faculty of the CSE Department, whose inspiration and
assistance helped me achieve this goal.

BY

Dr. Amar Nath

AP, CSE, SLIET LONGOWAL

4

Data Structures Sant Longowal Institute of Engineering and Technology

5

Data Structures Sant Longowal Institute of Engineering and Technology

Syllabus in detail

Unit 1: Introduction to Data Structures

1. Data Representation
○ Data Representation is the form in which data is stored, processed, and

transmitted. It can be numerical (integers, floating points), characters (ASCII), or
more complex structures like arrays, trees, or graphs.

2. Abstract Data Types (ADTs)
○ Abstract Data Types are a theoretical model for data structures with hidden

implementation details. The focus is on what operations are supported rather than
how they are performed. ADTs like stacks, queues, and lists provide a blueprint
for specific implementations.

3. Data Structures and Structured Types
○ Data Structure is an organized way to store, manage, and retrieve data. It focuses

on efficient operations like insertion, deletion, and traversal.
○ Structured Types include arrays, structs, etc., where multiple elements are

grouped and treated as a single entity.
4. Atomic Type

○ An Atomic Type represents simple, indivisible data like integers, characters, etc.
5. Difference between ADT, Data Types, and Data Structures

○ ADT: Defines the operations on the data without specifying the implementation.
○ Data Types: Specific sets of values and operations (e.g., int, char).
○ Data Structures: How data is stored (e.g., arrays, linked lists).

6. Types of Data Structures
○ Primitive Data Types: Integer, float, character, pointer.
○ Non-Primitive Data Types: Arrays, stacks, queues, linked lists, trees, graphs.
○ Linear Data Types: Data elements are arranged sequentially (e.g., arrays, linked

lists).
○ Non-Linear Data Types: Data elements are arranged hierarchically (e.g., trees,

graphs).

Unit 2: Fundamental Notations

1. Problem-Solving Concepts
○ Involves breaking down a problem into smaller manageable parts. Techniques

include top-down (starting from the general and moving to specifics) and
bottom-up (starting with specifics and moving to the general) approaches.

2. Structured Programming

6

Data Structures Sant Longowal Institute of Engineering and Technology

○ Involves organizing code into functions and modules for readability and
maintainability. It includes the use of loops, conditionals, and functions.

3. Data Types, Variables, and Constants
○ Data Types: Define the type of data a variable can hold (e.g., int, float).
○ Variables: Named storage that can hold data.
○ Constants: Fixed values that do not change during the program execution.

4. Pointer Variables and Constants
○ Pointers store the memory address of a variable. They provide direct access to

memory locations.
○ Pointer Constants: Pointers that cannot be changed after initialization.

Unit 3: Arrays

1. Concept of Arrays
○ An array is a collection of elements of the same type stored at contiguous

memory locations. Each element is accessed using an index.
2. Single Dimensional Arrays

○ An array with a single index (e.g., int arr[5];).
3. Two Dimensional Arrays

○ A 2D array is like a matrix, with rows and columns (e.g., int arr[3][4];).
4. Storage Strategies for Multidimensional Arrays

○ Multidimensional arrays can be stored in row-major order (rows first) or
column-major order (columns first).

Unit 4: Linked Lists

1. Introduction to Linked List
○ A linked list is a dynamic data structure where each element (node) points to the

next. It can grow or shrink dynamically.
2. Doubly Linked List

○ In a doubly linked list, each node contains pointers to the next and previous
nodes, allowing traversal in both directions.

3. Memory Representation
○ Linked lists are stored in non-contiguous memory locations. Each node contains

data and a pointer to the next node.
4. Operations on Linked Lists

○ Traversal: Visit each element on the list.
○ Searching: Finding an element.

7

Data Structures Sant Longowal Institute of Engineering and Technology

○ Insertion: Adding a new element.
○ Deletion: Removing an existing element.

Unit 5: Stacks

1. Introduction to Stacks
○ A stack is a linear data structure that follows the Last In, First Out (LIFO)

principle. The last element inserted is the first to be removed.
2. Stack Representation

○ Stacks can be represented using arrays or linked lists.
3. Stack Operations

○ Push: Insert an element.
○ Pop: Remove an element.
○ Top/Peek: View the top element without removing it.

4. Uses of Stacks
○ Stacks are used in function calls, expression evaluation, parsing, and more.

Unit 6: Queues and Recursion

● Introduction to Queues
○ A queue is a linear data structure that follows the First In, First Out (FIFO)

principle. The first element inserted is the first to be removed.
● Implementation of Queues

○ Queues can be implemented using arrays or linked lists.
● Types of Queues

○ Circular Queue: The last position is connected to the first, forming a circle.
○ Dequeue: A double-ended queue where elements can be added or removed from

both ends.
● Recursion

○ Recursion is a process where a function calls itself. It is essential in
problem-solving techniques like divide and conquers.

Unit 7: Binary Search Tree

1. Binary Trees
○ A binary tree is a hierarchical structure where each node has at most two

children.

8

Data Structures Sant Longowal Institute of Engineering and Technology

2. Tree Traversals
○ Pre-order: Visit root, left subtree, right subtree.
○ In order: Visit the left subtree, root, and right subtree.
○ Post-order: Visit the left subtree, right subtree, and root.

3. Binary Search Tree (BST)
○ A BST is a binary tree where each node's left child contains a value less than the

node, and the right child contains a value greater than the node.
4. Operations on BST

○ Searching: Find an element.
○ Insertion: Add an element.
○ Deletion: Remove an element.

Unit 8: Sorting and Searching Algorithms

1. Search Algorithms
○ Linear Search: Sequentially checks each element.
○ Binary Search: Divides the array in half repeatedly to find the element (requires

sorted array).
2. Sorting Algorithms

○ Bubble Sort: Repeatedly swaps adjacent elements if they are in the wrong order.
○ Insertion Sort: Builds a sorted array by inserting elements into the correct

position.
○ Quick Sort: A divide-and-conquer algorithm that partitions the array into

sub-arrays based on a pivot.
○ Selection Sort: Repeatedly selects the minimum element and swaps it with the

front element.
○ Merge Sort: A divide-and-conquer algorithm that splits the array and merges the

sorted sub-arrays.
○ Heap Sort: Sorts using a binary heap structure, focusing on the maximum or

minimum element.

9

Data Structures Sant Longowal Institute of Engineering and Technology

INDEX

S.No Content Page No:

1. Unit 1: Introduction to Data Structures 11-12

2. Unit 2: Fundamental Notations 13-18

3. Unit 3: Arrays 19-40

4. Unit 4: Linked Lists 41-45

5. Unit 5: Stacks 46-65

6. Unit 6: Queues and Recursion 66-80

7. Unit 7: Binary Search Tree 81-87

8. Unit 8: Sorting and Searching Algorithms 88-96

10

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 1: Introduction to Data Structures

7. Data Representation
○ Data Representation is the form in which data is stored, processed, and

transmitted. It can be numerical (integers, floating points), characters (ASCII), or
more complex structures like arrays, trees, or graphs.

8. Abstract Data Types (ADTs)
○ Abstract Data Types are a theoretical model for data structures with hidden

implementation details. The focus is on what operations are supported rather than
how they are performed. ADTs like stacks, queues, and lists provide a blueprint
for specific implementations. The definition of ADT only mentions what
operations are to be performed rather than how these operations will be
implemented.

○ It is called “abstract” because it gives an implementation-independent view.
○ An example of ADT is Queue and Stack ADT
○ Stack ADT

i. push() – Insert an element called top at one end of the stack.
ii. pop() – Remove and return the element at the top of the stack if it is not

empty.
iii. peek() – Return the element at the top of the stack without removing it if

the stack is not empty.
iv. size() – Return the number of elements in the stack.
v. isEmpty() – Return true if the stack is empty, otherwise, return false.
vi. isFull() – Return true if the stack is full; otherwise, return false.

○
Queue ADT

○ enqueue() – Insert an element at the end of the queue.
○ dequeue() – Remove and return the first element of the queue if the queue

is not empty.
○ peek() – Return the queue element without removing it if the queue is not

empty.
○ size() – Return the number of elements in the queue.
○ isEmpty() – Return true if the queue is empty; otherwise, return false.
○ isFull() – Return true if the queue is full; otherwise, return false.

9. Data Structures and Structured Types
○ Data Structure is an organized way to store, manage, and retrieve data. It focuses

on efficient operations like insertion, deletion, and traversal.
○ Structured Types include arrays, structs, etc., where multiple elements are

grouped and treated as a single entity.

11

Data Structures Sant Longowal Institute of Engineering and Technology

10. Atomic Type
○ An Atomic Type represents simple, indivisible data like integers, characters, etc.

11. Difference between ADT, Data Types, and Data Structures
○ ADT: Defines the operations on the data without specifying the implementation.
○ Data Types: Specific sets of values and operations (e.g., int, char).
○ Data Structures: How data is stored (e.g., arrays, linked lists).

12. Types of Data Structures
○ Primitive Data Types: Integer, float, character, pointer.
○ Non-Primitive Data Types: Arrays, stacks, queues, linked lists, trees, graphs.
○ Linear Data Types: Data elements are arranged sequentially (e.g., arrays, linked

lists).
○ Non-Linear Data Types: Data elements are arranged hierarchically (e.g., trees,

graphs).

12

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 2: Fundamental Notations

Problem-Solving Concepts

Problem-solving is solving complex issues by breaking them down into smaller, more
manageable parts. Effective problem-solving in programming involves a structured approach to
analyzing and addressing each part of the problem. The two major techniques used in
problem-solving are Top-Down Design and Bottom-Up Design. Let's explore these concepts in
detail:

1. Top-Down Design (Stepwise Refinement):
● Definition: Top-down design involves breaking down a complex problem into smaller

sub-problems or components. Each component is further divided into more specific
sub-components until all parts are manageable enough to be solved directly.

● Process:
○ Step 1: Identify the overall problem or goal.
○ Step 2: Divide the problem into smaller tasks or modules.
○ Step 3: Continue dividing tasks into sub-tasks until they can be implemented

directly.
○ Step 4: Solve or implement the smallest sub-problems first, then combine them to

solve larger tasks.
● Example:

○ Suppose you need to design software for a library management system.
○ In the top-down approach, the main problem is "Managing a Library."
○ Break this down into smaller problems such as "Add a Book," "Remove a Book,"

"Search for a Book," etc.
○ Each smaller problem can be broken down further, such as "Search for a Book"

can have "Search by Title" and "Search by Author."
● Advantages:

○ It is easier to manage and debug as each module can be handled independently.
○ Clear modular structure, improving code reusability.

● Disadvantages:
○ May overlook details of the implementation in the early stages.
○ Requires complete understanding of the problem from the beginning.

2. Bottom-Up Design:

13

Data Structures Sant Longowal Institute of Engineering and Technology

● Definition: Bottom-up design is an approach where you start by solving small, specific
problems and then builds up toward solving the overall larger problem. In this approach,
you implement individual components or modules and then integrate them to form a
complete solution.

● Process:
○ Step 1: Identify smaller, independent tasks or modules that can be developed first.
○ Step 2: Develop the solution for these smaller components.
○ Step 3: Integrate the individual components or modules to form larger systems.
○ Step 4: Continue integrating modules until the complete system is formed.

● Example:
○ Using the library management system as an example, the bottom-up approach

would involve developing individual components first, such as creating a function
to handle "Search by Title," another function for "Search by Author," etc.

○ After these smaller functions work independently, they are combined to form a
comprehensive "Search" feature.

● Advantages:
○ It lets you focus on smaller details and combine them into a larger picture.
○ Encourages the reuse of existing components or libraries.

● Disadvantages:
○ This may lead to issues in combining components if the overall system

architecture needs to be clarified from the beginning.
○ It may take longer to identify the complete solution.

3. Structured Programming:

● Definition: Structured programming is a programming paradigm that improves clarity,
quality, and development time using clear, logical structures such as sequences, loops,
and conditionals.

● Key Principles:
○ Sequence: Instructions are executed in a step-by-step manner.
○ Selection: Decision-making processes such as if-else statements.
○ Iteration: Repeating processes using loops (for, while).

● Advantages:
○ It makes programs more readable and maintainable.
○ Encourages modular programming and promotes the use of functions and

procedures.

4. Concept of Data Types:

● Definition: A data type specifies the data that can be stored and manipulated within a
program. Data types help define the operations that can be performed on that data.

● Basic Data Types:

14

Data Structures Sant Longowal Institute of Engineering and Technology

○ Primitive Data Types: Basic building blocks like int, float, char, and double.
○ Non-Primitive Data Types: include structures like arrays, linked lists, and

user-defined types like struct and enum.

5. Concept of Variables and Constants:

● Variables: A variable is a named memory location used to store data that can be changed
during program execution.

○ Example: int age = 25; (Here, age is a variable storing the value 25.)
● Constants: A constant is a fixed value that cannot be changed during program execution.

○ Example: const int MAX = 100; (Here, MAX is a constant whose value is fixed at
100.)

○
5. Structured Programming

○ Involves organizing code into functions and modules for readability and
maintainability. It includes the use of loops, conditionals, and functions.

6. Data Types, Variables, and Constants
○ Data Types: Define the type of data a variable can hold (e.g., int, float).
○ Variables: Named storage that can hold data.
○ Constants: Fixed values that do not change during the program execution.

7. Pointer Variables and Constants
○ Pointers store the memory address of a variable. They provide direct access to

memory locations.
○ Pointer Constants: Pointers that cannot be changed after initialization.

1. Pointer Variables:

A pointer is a special type of programming variable that stores another variable's memory
address. Instead of holding the actual data, a pointer "points" to the memory location where the
data is stored. Pointers are widely used in programming for efficient memory management,
dynamic memory allocation, and manipulating arrays and structures.

Declaration of a Pointer:

● A pointer is declared using the * symbol, which specifies that the variable is a pointer
type.

Syntax:

data_type *pointer_name;

int a = 10; // Regular integer variable
int *p = &a; // Pointer 'p' storing the address of variable 'a'

15

Data Structures Sant Longowal Institute of Engineering and Technology

In this example:

● a is a regular integer variable that stores the value 10.
● p is a pointer to an integer that stores the memory address of a. The &a, an operator

gives the memory address of a, and p holds this address.

Dereferencing a Pointer: To access the value stored at the memory address that the pointer is
pointing to, we use the * operator (called dereferencing).

printf("Value of a: %d\n", *p); // Output: 10 (Dereferencing pointer 'p' to get the value of 'a')

Here, *p returns the value stored at the memory location that p points to (i.e., the value of a).

2. Pointer Constants:

A pointer constant refers to a pointer whose value (i.e., the address it points to) cannot be
changed after it has been initialized. There are two types of constants when working with
pointers:

● Constant Pointer (Pointer to a constant): The pointer can point to different variables,
but the value of the pointer is pointing to cannot be changed through that pointer.

● Pointer Constant (Constant pointer): The pointer always points to the same memory
address after initialization, but the value at that address can be modified.

a. Constant Pointer:

A constant pointer ("pointer to a constant") points to a constant value. This means you cannot
change the value the pointer points to, but the pointer can point to a different location.

16

Data Structures Sant Longowal Institute of Engineering and Technology

const data_type *pointer_name;

int a = 10;
const int *p = &a;

// *p = 20; // Error: Cannot modify value pointed to by 'p'

int b = 30;
p = &b; // OK: Pointer 'p' can point to a different location

In this example:

● p is a pointer to a constant integer. The value at the address p is pointing to cannot be
modified (i.e., you cannot change the value of a through p).

● However, p itself can point to another variable, such as b.

b. Pointer Constant:

A pointer constant (also called a "constant pointer") is a pointer that cannot change the memory
address it points to after initialization, but you can modify the value stored at that address.

data_type *const pointer_name;
int a = 10;
int *const p = &a;

*p = 20; // OK: Can modify value pointed to by 'p'

// p = &b; // Error: Cannot change the address 'p' is pointing to

In this example:

● p is a constant pointer. It always points to the same memory address (in this case, the
address of a), so we cannot assign p to point to another variable.

● However, we can change the value at the memory address p points to (i.e., we can modify
the value of a through p).

17

Data Structures Sant Longowal Institute of Engineering and Technology

3. Constant Pointer to Constant:

It is also possible to have a constant pointer to a constant. This means that neither the address
the pointer holds nor the value at that address can be changed.

const data_type *const pointer_name;

int a = 10;
const int *const p = &a;

// *p = 20; // Error: Cannot modify value pointed to by 'p'
// p = &b; // Error: Cannot change the address 'p' is pointing to

In this example:

● p is a constant pointer to a constant integer. The value at the address p points to cannot
be changed, and the pointer itself cannot point to any other address.

Summary:

● Pointer Variable: Stores the memory address of a variable.
● Constant Pointer (Pointer to a Constant): Points to a constant value. The pointer can

point to different addresses, but the value at the address cannot be changed via the
pointer.

● Pointer Constant (Constant Pointer): The pointer cannot point to any other address
after initialization, but the value at the address can be changed.

● Constant Pointer to Constant: The pointer cannot change the address it points to, and
its value cannot be modified.

18

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 3. Arrays

5. Concept of Arrays
○ An array is a collection of elements of the same type stored at contiguous

memory locations. Each element is accessed using an index.
6. Single Dimensional Arrays

○ An array with a single index (e.g., int arr[5];).
7. Two Dimensional Arrays

○ A 2D array is like a matrix, with rows and columns (e.g., int arr[3][4];).
8. Storage Strategies for Multidimensional Arrays

○ Multidimensional arrays can be stored in row-major order (rows first) or
column-major order (columns first).

1. Concept of Arrays:

An array is a data structure that stores a collection of elements of the same data type in a
contiguous memory block. The array allows for indexed access to each element, which makes
retrieval and manipulation of data efficient. Arrays are fundamental data structures used to
organize data in a structured format.

Key Characteristics:

● Homogeneous: All elements of the array are of the same data type.
● Contiguous Memory: Elements are stored in adjacent memory locations.
● Fixed Size: The size of the array is determined at the time of declaration and cannot be

changed during runtime.
● Indexing: Each element in the array is associated with an index, starting from 0 for the

first element.

19

Data Structures Sant Longowal Institute of Engineering and Technology

A. Single Dimensional Arrays

An array is a collection of items of the same data type stored at contiguous memory locations.

Important: An array can store only the same type of data items. From the below example, you
can see how it works:

Program of an int array

20

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>
int main()
{
int arr[] = {10, 20, 30, 40, 50}; // display array
int i = 0;
while(arr[i]){
printf("%d ", arr[i]);
i++;}
return 0;
}

//if u dont know how many elements r there in an array

Different ways of initialization of an array.

// Online C compiler to
run C program online
#include <stdio.h>

int main() {

int arr[]= {10, 20, 30,
40, 50};

int arr1[5]= {10, 20,
30, 40, 50};

printf("The Array
elements are:\n");
for(int i=0; i<5; i++) {

printf("%d ", arr[i]);
}

return 0;
}

// Online C compiler to
run C program online
#include <stdio.h>

int main() {

// int arr[]= {10, 20, 30,
40, 50};

int arr1[8]= {10, 20,
30, 40, 50};

printf("The Array
elements are:\n");
for(int i=0; i<8; i++) {

printf("%d ", arr1[i]);
}

return 0;
}

// Online C compiler to
run C program online
#include <stdio.h>

int main() {

// int arr[]= {10, 20, 30,
40, 50};

int arr1[5]= {10, 20,
30, 40, 50};

printf("The Array
elements are:\n");
for(int i=0; i<7; i++) {

printf("%d ", arr1[i]);
}

return 0;
}

Memory Allocation of 1-D Array in C

21

Data Structures Sant Longowal Institute of Engineering and Technology

In C, a 1-D array is a collection of elements of the same data type stored in contiguous memory
locations. Each element can be accessed via an index from 0 to n-1, where n is the number of
elements in the array. The memory allocation for an array depends on the array elements' data
type and the array's number of elements.

Static Memory Allocation

Static memory allocation means the memory for the array is allocated at compile-time. The
array size is fixed and cannot be altered during program execution. The stack allocates memory
for static arrays declared inside a function.

Finding the Address of Elements in a 1-D Array

In a 1-D array, the elements are stored in contiguous memory locations. The address of any
element can be calculated using a formula that takes into account the base address of the array
and the size of the data type.

22

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

int main() {
int arr[5]; // Declares an array of size 5 (static allocation)

// Memory allocation in the stack, for example:
// if sizeof(int) is 4 bytes, the memory layout looks like:
// arr[0] -> address 1000 (4 bytes)
// arr[1] -> address 1004 (4 bytes)
// arr[2] -> address 1008 (4 bytes)
// arr[3] -> address 1012 (4 bytes)
// arr[4] -> address 1016 (4 bytes)

for (int i = 0; i < 5; i++) {
arr[i] = i + 1; // Assigning values to the array

}

// Printing the elements and their addresses
for (int i = 0; i < 5; i++) {

printf("arr[%d] = %d, Address = %p\n", i, arr[i], (void*)&arr[i]);
}

return 0;
}
Output
arr[0] = 1, Address = 0x7ffc1c1b60c0
arr[1] = 2, Address = 0x7ffc1c1b60c4
arr[2] = 3, Address = 0x7ffc1c1b60c8
arr[3] = 4, Address = 0x7ffc1c1b60cc
arr[4] = 5, Address = 0x7ffc1c1b60d0

Example 1: Array with Custom Negative Indexing (e.g., -10 to 4)

Let's assume an array with a valid index range of -10 to 4. Normally, C arrays are indexed from
0, but we can adjust the calculation of the addresses to simulate this custom index range.

Steps:

1. Simulate an array with indices from -10 to 4.
2. Use pointer arithmetic to calculate the address of each element.

23

Data Structures Sant Longowal Institute of Engineering and Technology

Formula for Address with Custom Indexing:

If you want to find the address of an element with index i in a custom-indexed array:

Address of arr[i] = Base address of arr[0] + ((i - start_index) * size of element)

#include <stdio.h>

int main() {
int arr[15]; // Array of 15 elements (from index -10 to 4)

// Simulating base address for custom indexing
int *base = &arr[10]; // We treat arr[10] as arr[0] in a normal array

// Calculating and printing the addresses for the range [-10, 4]
for (int i = -10; i <= 4; i++) {

printf("Address of arr[%d] = %p\n", i, (void*)(base + (i + 10)));
}

return 0;
}

Explanation:

● The array arr[15] has space for 15 integers.
● We simulate the array's base as arr[10], representing arr[0] in a normal array.
● We adjust the index by +10 to get the correct addresses when using negative indices.

○ For example, the address of arr[-10] is calculated as base + (-10 + 10), equivalent
to base + 0.

Example 2: Array with Arbitrary Positive Indexing (e.g., 100 to 200)

Now, let's assume an array indexed from 100 to 200. We use the same principle, simulating the
array as if it starts from index 100.

The formula for Address Calculation:

Address of arr[i] = Base address of arr[100] + ((i - 100) * size of element)

24

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

int main() {
int arr[101]; // Array of 101 elements (from index 100 to 200)

// Simulating base address for custom indexing
int *base = &arr[0]; // Base address for normal indexing

// Calculating and printing the addresses for the range [100, 200]
for (int i = 100; i <= 200; i++) {

printf("Address of arr[%d] = %p\n", i, (void*)(base + (i - 100)));
}

return 0;
}

Operation on an Array
Arrays are a fundamental data structure that stores multiple values of the same type in
contiguous memory locations. They allow efficient random access to elements and provide
operations such as insertion, deletion, searching, traversing, updating, and more.

Here are common operations that can be performed on an array:

1. Traversal
2. Insertion
3. Deletion
4. Searching
5. Updating
6. Sorting

1. Traversal

Traversal means accessing each element of an array once to perform some operations such as
printing or processing data.

25

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

int main() {
int arr[5] = {1, 2, 3, 4, 5};

// Traverse and print each element
for (int i = 0; i < 5; i++) {

printf("%d ", arr[i]);
}

return 0;
}
Output
1 2 3 4 5

2. Insertion

Insertion adds a new element at a specific position in the array. However, since arrays have fixed
sizes, if the array is full, you may need to shift elements to make room for the new element.

26

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

int main() {
int arr[6] = {1, 2, 3, 4, 5}; // Array has space for 6 elements
int n = 5; // Current size of the array
int element = 10;
int position = 2; // Insert at index 2 (3rd position)

// Shift elements to the right from the position to make space
for (int i = n; i > position; i--) {

arr[i] = arr[i - 1];
}

arr[position] = element; // Insert the element
n++; // Increase the size of the array

// Print the array after insertion
for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);
}

return 0;
}
Output

1 2 10 3 4 5

3. Deletion

Deletion involves removing an element from the array at a given index and then shifting
elements to fill the gap.

27

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

int main() {
int arr[5] = {1, 2, 3, 4, 5};
int n = 5; // Current size of the array
int position = 2; // Remove the element at index 2

// Shift elements to the left to fill the gap
for (int i = position; i < n - 1; i++) {

arr[i] = arr[i + 1];
}

n--; // Decrease the size of the array

// Print the array after deletion
for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);
}

return 0;
}

Output
1 2 4 5

4. Searching

Searching for an element in an array can be done in two ways:

● Linear Search: Traverse through the array one by one.
● Binary Search: Works on sorted arrays. The array is repeatedly divided into half until

the element is found or the search space becomes empty.

28

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

int main() {
int arr[5] = {1, 2, 3, 4, 5};
int n = 5;
int key = 3; // Element to be searched
int found = 0;

// Linear search
for (int i = 0; i < n; i++) {

if (arr[i] == key) {
printf("Element %d found at index %d\n", key, i);
found = 1;
break;

}
}

if (!found) {
printf("Element %d not found\n", key);

}

return 0;
}

29

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

int binarySearch(int arr[], int l, int r, int x) {
if (r >= l) {

int mid = l + (r - l) / 2;

if (arr[mid] == x)
return mid;

if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);

return binarySearch(arr, mid + 1, r, x);
}

return -1;
}

int main(void) {
int arr[] = {2, 3, 4, 10, 40};
int n = sizeof(arr) / sizeof(arr[0]);
int x = 10;
int result = binarySearch(arr, 0, n - 1, x);
if (result == -1)

printf("Element is not present in array\n");
else

printf("Element is present at index %d\n", result);
return 0;

}

30

Data Structures Sant Longowal Institute of Engineering and Technology

5. Updating

Updating means modifying the value of an existing element in the array at a particular index.

#include <stdio.h>

int main() {
int arr[5] = {1, 2, 3, 4, 5};
int position = 2; // Update the element at index 2
int newValue = 10;

arr[position] = newValue; // Update the value

// Print the array after updating
for (int i = 0; i < 5; i++) {

printf("%d ", arr[i]);
}

return 0;
}

Output
1 2 10 4 5

31

Data Structures Sant Longowal Institute of Engineering and Technology

6. Sorting

Sorting refers to rearranging the elements in an array in increasing or decreasing order. Common
algorithms include Bubble Sort, Insertion Sort, Quick Sort, and Merge Sort.

#include <stdio.h>

void bubbleSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {

for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {

// Swap arr[j] and arr[j+1]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;

}
}

}
}

int main() {
int arr[5] = {5, 1, 4, 2, 8};
int n = 5;

bubbleSort(arr, n); // Sorting the array

// Print the sorted array
for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);
}

return 0;
}

32

Data Structures Sant Longowal Institute of Engineering and Technology

2D Arrays: Concept, Operations, and Examples

A 2D array (also known as a matrix) is a collection of data elements arranged in rows and
columns. It can be visualized as a table where each element is identified by two indices: one for
the row and one for the column.

Basic Concept of 2D Arrays

● A 2D array is an array of arrays. It is used to represent a matrix-like structure where data
is organized in rows and columns.

● A 2D array is declared by specifying two dimensions: the number of rows and the
number of columns.

Declaration of a 2D Array in C

33

Data Structures Sant Longowal Institute of Engineering and Technology

Memory Representation of 2D Arrays

In memory, a 2D array is stored either in:

1. Row-Major Order: Elements of the rows are stored in contiguous memory locations.
2. Column-Major Order: Elements of the columns are stored in contiguous memory

locations.
● Row-Major Order: This is the default storage strategy in most programming languages,

including C. The elements of the first row are stored first, followed by the elements of the
second row, and so on.
Memory address of an element in Row-Major Order:

Address(arr[i][j]) = Base_address + [(i * total_columns) + j] * size_of_element

Column-Major Order: In this strategy, the elements of the first column are stored first,
followed by the elements of the second column, and so on.

Address(arr[i][j]) = Base_address + [(j * total_rows) + i] * size_of_element

34

Data Structures Sant Longowal Institute of Engineering and Technology

Example: Accessing Elements in a 2D Array

Given the following 2D array:

int arr[3][4] = {
{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12}

};
The element arr[0][0] is 1.
The element arr[1][2] is 7.
The element arr[2][3] is 12.

Operations on a 2D Array

Traversing a 2D Array

To traverse a 2D array, we must access each element row by row or column by column.

35

Data Structures Sant Longowal Institute of Engineering and Technology

36

Data Structures Sant Longowal Institute of Engineering and Technology

Pseudo Code for Traversing (Row-Major Order):

37

Data Structures Sant Longowal Institute of Engineering and Technology

Procedure Traverse2DArray(arr, rows, cols):
For i = 0 to rows - 1:

For j = 0 to cols - 1:
Print arr[i][j]

In c.
#include <stdio.h>

int main() {
int arr[3][4] = {

{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12}

};

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {

printf("%d ", arr[i][j]);
}
printf("\n");

}
return 0;

}

Insertion in a 2D Array

Inserting an element into a 2D array requires specifying the row and column position where the
element is to be inserted.

arr[2][1] = 15; // Inserting 15 into the third row and second column

Searching in a 2D Array

38

Data Structures Sant Longowal Institute of Engineering and Technology

Linear search can be used to find an element in a 2D array by traversing the array and comparing
each element with the target.

Procedure Search2DArray(arr, rows, cols, key):
For i = 0 to rows - 1:

For j = 0 to cols - 1:
If arr[i][j] == key:

Print "Element found at", i, j
Return

Print "Element not found"

In C
#include <stdio.h>

int main() {
int arr[3][4] = {

{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12}

};
int key = 7;
int found = 0;

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {

if (arr[i][j] == key) {
printf("Element found at (%d, %d)\n", i, j);
found = 1;
break;

}
}
if (found) break;

}

if (!found) {
printf("Element not found\n");

}

return 0;
}

39

Data Structures Sant Longowal Institute of Engineering and Technology

Address Calculation in 2D Arrays

For a 2D array with base address Base_address, we can calculate the address of an element
using row-major order with the formula:

Address(arr[i][j]) = Base_address + [(i * total_columns) + j] * size_of_element

Where:

● Base_address is the starting address of the array.
● i is the row index.
● j is the column index.
● total_columns is the number of columns in the array.
● size_of_element is the size of each element (e.g., 4 bytes for an integer).

Example:

Consider a 2D array arr[3][4] of integers starting at address 1000 with size_of_element = 4 bytes.

To find the address of the element at position arr[2][3]:

Address(arr[2][3]) = 1000 + [(2 * 4) + 3] * 4
= 1000 + (8 + 3) * 4
= 1000 + 11 * 4
= 1000 + 44
= 1044

40

Data Structures Sant Longowal Institute of Engineering and Technology

41

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 4: Linked Lists

5. Introduction to Linked List
○ A linked list is a dynamic data structure where each element (node) points to the

next. It can grow or shrink dynamically.
6. Doubly Linked List

○ In a doubly linked list, each node contains pointers to the next and previous
nodes, allowing traversal in both directions.

7. Memory Representation
○ Linked lists are stored in non-contiguous memory locations. Each node contains

data and a pointer to the next node.
8. Operations on Linked Lists

○ Traversal: Visit each element on the list.
○ Searching: Finding an element.
○ Insertion: Adding a new element.
○ Deletion: Removing an existing element.

A linked list is a linear collection of data elements called nodes in which linear representation is
given by links from one node to the next node. Similar to the array, it is a linear collection of
data elements of the same type. Different from an array, data elements of a linked list are
generally not lined in consecutive memory space; instead, they are dispersed in various locations.

● Definition: A linear data structure where elements are connected using pointers, allowing
for dynamic growth and shrinking.

42

Data Structures Sant Longowal Institute of Engineering and Technology

● Nodes: Basic units of a linked list, typically containing data and a pointer to the next
node.

● Singly Linked Lists: Each node has a pointer to the next node.
● Doubly Linked Lists: Each node has pointers to the previous and next nodes.

Singly Linked Lists

● Advantages:
○ Simple implementation.
○ Efficient insertion and deletion at the beginning or end.

● Disadvantages:
○ Inefficient traversal in the reverse direction.
○ Can efficiently access a specific element by traversing from the beginning.

Doubly Linked Lists

● Advantages:
○ Efficient traversal in both directions.
○ Efficient insertion and deletion at any position.

● Disadvantages:
○ More complex implementation.
○ Slightly more memory overhead due to the additional pointer.

Linked List Operations

● Initialization: Creating an empty linked list.
● Insertion: Adding a new node at the beginning, end, or a specific position.
● Deletion: Removing a node from the beginning, end, or a specific position.
● Traversal: Iterating through the linked list to access or modify elements.
● Searching: Finding a specific element in the linked list.

Linked List Applications

● Stacks: Implementing stacks using linked lists.
● Queues: Implementing queues using linked lists.
● Graphs: Representing graphs using adjacency lists.
● Polynomial representation: Representing polynomials using linked lists.
● Music playlists: Storing and managing songs in a linked list.

43

Data Structures Sant Longowal Institute of Engineering and Technology

struct Node {
int data;
Node* next;

};

class LinkedList {
public:

Node* head;

LinkedList() {
head = nullptr;

}

void insertAtBeginning(int data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = head;
head = newNode;

}

// ... other operations like insertAtEnd, delete, search, etc.
};

Example (Doubly Linked List-insertion)

44

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;
struct Node* prev;

};

// Function to insert at the beginning
struct Node* insertAtBeginning(struct Node* head, int newData) {

struct Node* newNode = (struct Node*) malloc(sizeof(struct Node));
newNode->data = newData;
newNode->next = head;
newNode->prev = NULL;

if (head != NULL) {
head->prev = newNode;

}

return newNode;
}

int main() {
struct Node* head = NULL;

// Insert elements
head = insertAtBeginning(head, 40);
head = insertAtBeginning(head, 50);

return 0;
}

45

Data Structures Sant Longowal Institute of Engineering and Technology

46

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 5: Stacks

5. Introduction to Stacks
○ A stack is a linear data structure that follows the Last In, First Out (LIFO)

principle. The last element inserted is the first to be removed.
6. Stack Representation

○ Stacks can be represented using arrays or linked lists.
7. Stack Operations

○ Push: Insert an element.
○ Pop: Remove an element.
○ Top/Peek: View the top element without removing it.

8. Uses of Stacks
○ Stacks are used in function calls, expression evaluation, parsing, and more.

Introduction to Stacks

A stack is a linear data structure that operates on the Last In, First Out (LIFO) principle. This
means the last element added to the stack is the first to be removed. Stacks are commonly
compared to a pile of plates, where you can only remove the topmost plate and add a new one to
the top.

Characteristics of Stacks:

● LIFO principle: The element added last is removed first.
● Operations are performed only on one end of the stack, called the top.

Operations on stack

• push(): When we insert an element in a stack, the operation is known as push. If the stack is
full, then the overflow condition occurs.

• pop(): When we delete an element from the stack, the operation is known as a pop. If the
stack is empty, no element exists; this state is known as an underflow state.

• isEmpty(): It determines whether the stack is empty or not.

• isFull(): It determines whether the stack is full.

• peek(): This operation returns the value at the top of the stack, allowing you to see what is
there, but the value is not removed. This operation is typically used when inspecting the most
recent item pushed to the stack.

• count(): It returns the total number of elements available in a stack.

47

Data Structures Sant Longowal Institute of Engineering and Technology

• change(): It changes the element at the given position.

• display(): It prints all the elements available in the stack.

Working of Stack

48

Data Structures Sant Longowal Institute of Engineering and Technology

Array Implementation of stack

49

Data Structures Sant Longowal Institute of Engineering and Technology

#include <iostream>

using namespace std;

const int MAX_SIZE = 100;

class Stack {
public:

int arr[MAX_SIZE];
int top;

Stack() {
top = -1;

}

bool isEmpty() {
return top == -1;

}

bool isFull() {
return top == MAX_SIZE - 1;

}

void push(int x) {
if (isFull()) {

cout << "Stack Overflow\n";
return;

}
arr[++top] = x;

}

int pop() {
if (isEmpty()) {

cout << "Stack Underflow\n";
return -1;

}
return arr[top--];

}

int peek() {
if (isEmpty()) {

cout << "Stack Underflow\n";
return -1;

}
return arr[top];

}

50

Data Structures Sant Longowal Institute of Engineering and Technology

};

int main() {
Stack stack;

stack.push(10);
stack.push(20);
stack.push(30);

cout << stack.pop() << endl;
cout << stack.peek() << endl;

return 0;
}

Implementation using Linked List

Push function

We should create the linked list in reverse order so that the head node always points to the last
inserted data.

51

Data Structures Sant Longowal Institute of Engineering and Technology

#include <iostream>

using namespace std;

struct Node {
int data;
Node* next;

};

class Stack {
public:

Node* top;

Stack() {
top = nullptr;

}

bool isEmpty() {
return top == nullptr;

}

void push(int x) {
Node* newNode = new Node;
newNode->data = x;
newNode->next = top;
top = newNode;

}

int pop() {
if (isEmpty()) {

cout << "Stack Underflow\n";
return -1;

}
int x = top->data;
Node* temp = top;
top = top->next;
delete temp;
return x;

}

int peek() {
if (isEmpty()) {

cout << "Stack Underflow\n";
return -1;

}
return top->data;

52

Data Structures Sant Longowal Institute of Engineering and Technology

}
};

// ... rest of the code remains the same

Expression Evaluation of Infix Expression Using Stack

Infix expressions are the standard way of writing mathematical expressions where operators are
placed between operands (e.g., A + B). The challenge with infix expressions is that operators
have precedence and associativity rules, making evaluation more complex than postfix
expressions. To evaluate an infix expression using stacks, we convert it to postfix or evaluate it
directly using two stacks: one for operands and another for operators.

Steps to Evaluate Infix Expression Using Stack:

1. Initialize two stacks:
○ Operand Stack: To store numbers or variables (operands).
○ Operator Stack: Store operators like +, -, *, /.

2. Scan the expression from left to right:

53

Data Structures Sant Longowal Institute of Engineering and Technology

○ If you encounter an operand (a number or variable), push it onto the operand
stack.

○ If you encounter an opening parenthesis ((), push it onto the operator stack.
○ If you encounter a closing parenthesis ()):

■ Pop from the operator stack and apply the operator to the top two operands
in the operand stack until you find the opening parenthesis.

■ Pop the opening parenthesis from the operator stack.
○ If you encounter an operator:

■ While the operator stack is not empty and the precedence of the current
operator is less than or equal to the precedence of the operator on top of
the operator stack, apply the operator on top of the stack to the top two
operands in the operand stack.

■ Push the current operator onto the operator stack.
3. When the expression is completely scanned, apply any operators in the operator stack

to the operands in the operand stack.
4. Result: The expression will result in the operand stack's final value.

54

Data Structures Sant Longowal Institute of Engineering and Technology

Procedure EvaluateInfix(expression):
Create empty Operand Stack
Create empty Operator Stack

For each character in the expression:
If the character is a number or operand:

Push it onto the Operand Stack
If the character is an opening parenthesis '(':

Push it onto the Operator Stack
If the character is a closing parenthesis ')':

While the top of the Operator Stack is not '(':
Operator = Pop from Operator Stack
Operand2 = Pop from Operand Stack
Operand1 = Pop from Operand Stack
Result = Apply Operator to Operand1 and Operand2
Push Result onto Operand Stack

Pop '(' from the Operator Stack
If the character is an operator:

While Operator Stack is not empty and precedence of character <= precedence of top
of Operator Stack:

Operator = Pop from Operator Stack
Operand2 = Pop from Operand Stack
Operand1 = Pop from Operand Stack
Result = Apply Operator to Operand1 and Operand2
Push Result onto Operand Stack

Push the current character (operator) onto the Operator Stack

While Operator Stack is not empty:
Operator = Pop from Operator Stack
Operand2 = Pop from Operand Stack
Operand1 = Pop from Operand Stack
Result = Apply Operator to Operand1 and Operand2
Push Result onto Operand Stack

Return the top of Operand Stack (final result)

Example

55

Data Structures Sant Longowal Institute of Engineering and Technology

56

Data Structures Sant Longowal Institute of Engineering and Technology

57

Data Structures Sant Longowal Institute of Engineering and Technology

58

Data Structures Sant Longowal Institute of Engineering and Technology

59

Data Structures Sant Longowal Institute of Engineering and Technology

60

Data Structures Sant Longowal Institute of Engineering and Technology

CONVERT INTO POST EXPRESSION

61

Data Structures Sant Longowal Institute of Engineering and Technology

Algorithm infix to prefix

62

Data Structures Sant Longowal Institute of Engineering and Technology

63

Data Structures Sant Longowal Institute of Engineering and Technology

Application of Stack for recursion evaluation

Application of Stack for Recursion Evaluation

Recursion is a programming technique where a function calls itself to solve a smaller instance of
the same problem. Each recursive call adds a new layer to the call stack, storing information
about the function's execution state, including local variables and the return address. When the
base case is reached, the function returns and the stack unwinds to the initial call.

How Stack Works in Recursion

1. Function Call: When a recursive function is called, a new stack frame is created, which
contains:

○ The function's parameters.
○ Local variables.

64

Data Structures Sant Longowal Institute of Engineering and Technology

○ The address of the next instruction to be executed after the function returns.
2. Stack Growth: Each recursive call pushes a new frame onto the call stack until the base

case is reached.
3. Base Case: The function returns a value once the base case is met. The stack unwinds as

each frame is popped off, returning control to the previous frame.
4. Return Value: The final return value is passed through the stack frames until it reaches

the original caller.

Example of Recursion: Factorial Calculation

Factorial Function: The factorial of a non-negative integer nnn is the product of all positive
integers up to nnn. It is defined recursively as:

65

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

// Recursive function to calculate factorial
int factorial(int n) {

// Base case
if (n == 0) {

return 1;
} else {

// Recursive case
return n * factorial(n - 1);

}
}

int main() {
int number = 5;
printf("Factorial of %d is %d\n", number, factorial(number));
return 0;

}

66

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 6: Queues and Recursion

● Introduction to Queues
○ A queue is a linear data structure that follows the First In, First Out (FIFO)

principle. The first element inserted is the first to be removed.

67

Data Structures Sant Longowal Institute of Engineering and Technology

add(value) places given value at back of queue

remove() removes value from front of queue and
returns it;
throws a NoSuchElementException if
queue is empty

peek() returns front value from queue without
removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

Priority Queue:

� This queue is a special type of queue. Its specialty is that it arranges the elements in a
queue based on some priority.

� The priority can be something where the element with the highest value has the priority
so it creates a queue with decreasing order of values.

� The priority can also be such that the element with the lowest value gets the highest
priority so in turn it creates a queue with increasing order of values.

68

Data Structures Sant Longowal Institute of Engineering and Technology

69

Data Structures Sant Longowal Institute of Engineering and Technology

70

Data Structures Sant Longowal Institute of Engineering and Technology

● Implementation of Queues
○ Queues can be implemented using arrays or linked lists.
○

71

Data Structures Sant Longowal Institute of Engineering and Technology

● /*

● * C Program to Implement a Queue using an Array

● */

● #include <stdio.h>

●
● #define MAX 50

●
● void insert();

● void delete();

● void display();

● int queue_array[MAX];

● int rear = - 1;

● int front = - 1;

● main()

● {

● int choice;

● while (1)

● {

● printf("1.Insert element to queue \n");

● printf("2.Delete element from queue \n");

● printf("3.Display all elements of queue

\n");

● printf("4.Quit \n");

● printf("Enter your choice : ");

● scanf("%d", &choice);

●
● switch (choice)

● {

● case 1:

● insert();

● break;

● case 2:

● delete();

● break;

72

Data Structures Sant Longowal Institute of Engineering and Technology

● case 3:

● display();

● break;

● case 4:

● exit(1);

● default:

● printf("Wrong choice \n");

● } /* End of switch */

● } /* End of while */

● } /* End of main() */

●

1. void insert()

2. {

3. int add_item;

4. if (rear == MAX - 1)

5. printf("Queue Overflow \n");

6. else

7. {

8. if (front == - 1)

9. /*If queue is initially empty */

10. front = 0;

11. printf("Inset the element in

queue : ");

12. scanf("%d", &add_item);

13. rear = rear + 1;

14. queue_array[rear] = add_item;

15. }

16. } /* End of insert() */

17.

73

Data Structures Sant Longowal Institute of Engineering and Technology

1. void delete()

2. {

3. if (front == - 1 || front > rear)

4. {

5. printf("Queue Underflow \n");

6. return ;

7. }

8. else

9. {

10. printf("Element deleted from queue is :

%d\n", queue_array[front]);

11. front = front + 1;

12. }

13. } /* End of delete() */

14.
15. void display()

16. {

17. int i;

18. if (front == - 1)

19. printf("Queue is empty \n");

20. else

21. {

22. printf("Queue is : \n");

23. for (i = front; i <= rear; i++)

24. printf("%d ", queue_array[i]);

25. printf("\n");

26. }

27. } /* End of display() */

○
● Types of Queues

○ Circular Queue: The last position is connected to the first, forming a circle.
○ Dequeue: A double-ended queue where elements can be added or removed from

both ends.

74

Data Structures Sant Longowal Institute of Engineering and Technology

� Circular Queue Data Structure: A circular queue is the extended
version of a regular queue where the last element is connected to the first element. Thus
forming a circle-like structure.

75

https://www.programiz.com/data-structures/queue

Data Structures Sant Longowal Institute of Engineering and Technology

76

Data Structures Sant Longowal Institute of Engineering and Technology

77

Data Structures Sant Longowal Institute of Engineering and Technology

● Recursion
○ Recursion is a process where a function calls itself. It is essential in

problem-solving techniques like divide and conquer.

78

Data Structures Sant Longowal Institute of Engineering and Technology

Recursion: A Detailed Explanation

Recursion is a powerful and fundamental programming concept where a function calls itself to
solve a problem. This self-referential behavior is useful for breaking down complex problems
into smaller, more manageable subproblems. When used effectively, recursion simplifies code,
making it more readable and often leading to elegant solutions for problems that would otherwise
be complicated to solve using iterative approaches.

Key Concepts of Recursion:

1. Base Case: The most crucial part of any recursive function is its base case, which acts as a
stopping condition. Without a base case, the function would continue to call itself
indefinitely, leading to infinite recursion and a stack overflow error. The base case tells
the function when to stop the recursion and return a result directly.

2. Recursive Case: Besides the base case, a recursive function includes a recursive case
where the function breaks the problem down into smaller subproblems and calls itself
with updated parameters. The solution to the larger problem is then constructed using the
results of these smaller subproblems.

3. Stack Mechanism: Recursion relies on the function call stack, a data structure that stores
information about function calls. Each time a recursive function is called, a new frame is
pushed onto the stack, storing the function's local variables, parameters, and return
address. When the base case is reached, the function returns values, and the stack frames
are popped off in reverse order, ultimately leading to the final result.

79

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

// Recursive function to calculate factorial
int factorial(int n) {

// Base case
if (n == 0) {

return 1;
}
// Recursive case
else {

return n * factorial(n - 1);
}

}

int main() {
int num;
printf("Enter a number: ");
scanf("%d", &num);

int result = factorial(num);
printf("Factorial of %d is %d\n", num, result);

return 0;
}

In this example:

● The base case is when n=0, where the function returns 1.
● The recursive case is when n is greater than 0, where the

function calls itself with n−1.

Example: Fibonacci Sequence

The Fibonacci sequence is another example where recursion is useful. The sequence is defined
as:

F(n)=F(n−1)+F(n−2)

with the base cases being:
F(0)=0 and F(1)=1

80

Data Structures Sant Longowal Institute of Engineering and Technology

Types of Recursion

1. Direct Recursion: This is the most straightforward form where a function calls itself
directly.

#include <stdio.h>

void func() {
func(); // Recursive call without base case

}

int main() {
func(); // Calling the recursive function
return 0;

}

2. Indirect Recursion: In indirect recursion, a function calls another function, and that
function, in turn, calls the original function, creating a recursive loop.

81

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

void funcB(); // Forward declaration of funcB

void funcA() {
funcB(); // funcA calls funcB

}

void funcB() {
funcA(); // funcB calls funcA

}

int main() {
funcA(); // Start the mutual recursion
return 0;

}

3. Tail Recursion: A special form of recursion where the recursive call is the last operation
in the function. Some compilers and interpreters optimize tail recursion to avoid stack
overflow issues.

82

Data Structures Sant Longowal Institute of Engineering and Technology

#include <stdio.h>

// Tail recursive function to calculate factorial
unsigned long long tail_recursive_factorial(int n, unsigned long long accumulator) {

if (n == 0) {
return accumulator;

} else {
return tail_recursive_factorial(n - 1, n * accumulator);

}
}

int main() {
int num = 5; // Example number
unsigned long long result = tail_recursive_factorial(num, 1);
printf("Factorial of %d is %llu\n", num, result);
return 0;

}

Pros and Cons of Recursion

Advantages:

● Simpler Code: For problems like tree traversal, the recursive approach is often more
intuitive and leads to shorter, cleaner code.

● Problem Solving: Recursion is naturally suited for problems broken down into smaller,
similar subproblems (e.g., divide and conquer strategies like quicksort mergesort).

Disadvantages:

● Memory Overhead: Each recursive call requires extra memory to store the function call
on the stack. This can lead to memory inefficiency and, in extreme cases, stack overflow.

● Slower Execution: Recursion can sometimes be slower than an iterative approach
because each function call adds to the overhead.

Real-World Applications of Recursion

1. Tree Traversals: Recursion is widely used to traverse hierarchical data structures like trees
(e.g., binary trees, n-ary trees). Common tree traversals such as in-order, pre-order, and
post-order are typically implemented recursively.

83

Data Structures Sant Longowal Institute of Engineering and Technology

2. Divide and Conquer Algorithms: Algorithms like merge sort, quicksort, and binary
search use recursion to break problems down into smaller subproblems.

3. Dynamic Programming: Problems like the Fibonacci sequence, longest common
subsequence, and matrix chain multiplication use recursion and memoization to optimize
solutions.

4. Graph Algorithms: Depth-first search (DFS) is a graph traversal algorithm often
implemented using recursion.

5. Backtracking: Recursion is fundamental in solving problems where all possible
solutions must be explored (e.g., N-queens problem, Sudoku solver).

84

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 7: Binary Search Tree
5. Binary Trees

○ A binary tree is a hierarchical structure where each node has at most two
children.

○

○

85

Data Structures Sant Longowal Institute of Engineering and Technology

○

○

86

Data Structures Sant Longowal Institute of Engineering and Technology

○

○

87

Data Structures Sant Longowal Institute of Engineering and Technology

6. Tree Traversals
○ Pre-order: Visit root, left subtree, right subtree.
○ In order: Visit the left subtree, root, and right subtree.
○ Post-order: Visit the left subtree, right subtree, and root.

1. In inorder traversal, we visit the left subtree first, then the root node, and finally the
right subtree. This traversal is commonly used for binary search trees (BST) because it
visits the nodes in ascending order.

Steps:

1. Traverse the left subtree by recursively calling the in-order function.
2. Visit the root node.
3. Traverse the right subtree by recursively calling the in-order function.

88

Data Structures Sant Longowal Institute of Engineering and Technology

2. Preorder Traversal (Root, Left, Right)

In preorder traversal, we visit the root node first, the left subtree, and finally the right subtree.
Preorder traversal is useful when copying or printing the tree structure.

Steps:

1. Visit the root node.
2. Traverse the left subtree by recursively calling the preorder function.
3. Traverse the right subtree by recursively calling the preorder function.

89

Data Structures Sant Longowal Institute of Engineering and Technology

3. Postorder Traversal (Left, Right, Root)

In postorder traversal, we traverse the left subtree first, then the right subtree, and
finally the root node. Postorder is useful for deleting or evaluating trees.

Steps:

1. Traverse the left subtree by recursively calling the postorder function.
2. Traverse the right subtree by recursively calling the postorder function.
3. Visit the root node.

90

Data Structures Sant Longowal Institute of Engineering and Technology

Example:

91

Data Structures Sant Longowal Institute of Engineering and Technology

Unit 8: Sorting and Searching Algorithms

3. Search Algorithms
○ Linear Search: Sequentially checks each element.
○ Binary Search: Divides the array in half repeatedly to find the element (requires

sorted array).
4. Sorting Algorithms

○ Bubble Sort: Repeatedly swaps adjacent elements if they are in the wrong order.
○ Insertion Sort: Builds a sorted array by inserting elements into the correct

position.
○ Quick Sort: A divide-and-conquer algorithm that partitions the array into

sub-arrays based on a pivot.
○ Selection Sort: Repeatedly selects the minimum element and swaps it with the

front element.
○ Merge Sort: A divide-and-conquer algorithm that splits the array and merges the

sorted sub-arrays.
○ Heap Sort: Sorts using a binary heap structure, focusing on the maximum or

minimum element.

Search Algorithms

1. Linear Search:
○ Concept: Linear search is the simplest search algorithm where each

element of the array is checked sequentially to find the target element.
○ Time Complexity: O(n), where n is the number of elements in the array.
○ Advantages: Works on unsorted arrays.
○ Disadvantages: Inefficient for large datasets as it may require scanning

all elements.
2. Example:

int linearSearch(int arr[], int n, int target) {
for (int i = 0; i < n; i++) {

if (arr[i] == target) {
return i;

}
}
return -1;

}

92

Data Structures Sant Longowal Institute of Engineering and Technology

Binary Search:

● Concept: Binary search divides the sorted array in half and eliminates one half of the
search space in each iteration. It requires the array to be sorted.

● Time Complexity: O(log n), where n is the number of elements in the array.
● Advantages: Efficient for large datasets if the array is sorted.
● Disadvantages: Requires the array to be sorted.

Example:

int binarySearch(int arr[], int left, int right, int target) {
while (left <= right) {

int mid = left + (right - left) / 2;
if (arr[mid] == target) return mid;
else if (arr[mid] < target) left = mid + 1;
else right = mid - 1;

}
return -1;

}

Sorting Algorithms

1. Bubble Sort:
○ Concept: In this sorting algorithm, adjacent elements are repeatedly compared

and swapped if they are in the wrong order. This continues until the array is
sorted.

○ Time Complexity: O(n²), where n is the number of elements in the array.
○ Advantages: Simple to understand and implement.
○ Disadvantages: Not efficient for large datasets.

Example:

93

Data Structures Sant Longowal Institute of Engineering and Technology

void bubbleSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {

for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {

int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;

}
}

}
}

Insertion Sort:

● Concept: Builds the final sorted array one element at a time by picking elements and
placing them in their correct positions in the sorted portion of the array.

● Time Complexity: O(n²) for worst-case scenarios, but O(n) for nearly sorted data.
● Advantages: More efficient than bubble sort on small or nearly sorted arrays.
● Disadvantages: Inefficient on large datasets.

void insertionSort(int arr[], int n) {
for (int i = 1; i < n; i++) {

int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {

arr[j + 1] = arr[j];
j = j - 1;

}
arr[j + 1] = key;

}
}

Quick Sort:

● Concept: A divide-and-conquer algorithm that picks a pivot element, partitions the array
into two sub-arrays, and recursively sorts the sub-arrays.

● Time Complexity: O(n log n) on average, but O(n²) in the worst case if the pivot is
poorly chosen.

94

Data Structures Sant Longowal Institute of Engineering and Technology

● Advantages: Very efficient for large datasets and generally faster than merge sort.
● Disadvantages: Worst-case performance can be poor; requires careful selection of the

pivot.

int partition(int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j < high; j++) {

if (arr[j] <= pivot) {
i++;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}
}
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return (i + 1);

}

void quickSort(int arr[], int low, int high) {
if (low < high) {

int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}
}

Selection Sort:

● Concept: Repeatedly selects the minimum element from the unsorted portion of the array
and swaps it with the element at the beginning of the unsorted section.

● Time Complexity: O(n²), where n is the number of elements.
● Advantages: Simple to understand and implement, reduces the number of swaps

compared to bubble sort.
● Disadvantages: Not efficient for large datasets

95

Data Structures Sant Longowal Institute of Engineering and Technology

void selectionSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {

int minIndex = i;
for (int j = i + 1; j < n; j++) {

if (arr[j] < arr[minIndex]) {
minIndex = j;

}
}
int temp = arr[minIndex];
arr[minIndex] = arr[i];
arr[i] = temp;

}
}

Merge Sort:

● Concept: A divide-and-conquer algorithm that splits the array into two halves,
recursively sorts each half, and then merges them to form a sorted array.

● Time Complexity: O(n log n), where n is the number of elements.
● Advantages: Stable and works well on large datasets.
● Disadvantages: Requires extra space for merging, which can be a disadvantage in

memory-constrained environments.

96

Data Structures Sant Longowal Institute of Engineering and Technology

void merge(int arr[], int l, int m, int r) {
int n1 = m - l + 1;
int n2 = r - m;
int L[n1], R[n2];

for (int i = 0; i < n1; i++)
L[i] = arr[l + i];

for (int j = 0; j < n2; j++)
R[j] = arr[m + 1 + j];

int i = 0, j = 0, k = l;
while (i < n1 && j < n2) {

if (L[i] <= R[j]) {
arr[k] = L[i];
i++;

} else {
arr[k] = R[j];
j++;

}
k++;

}
while (i < n1) {

arr[k] = L[i];
i++;
k++;

}
while (j < n2) {

arr[k] = R[j];
j++;
k++;

}
}

void mergeSort(int arr[], int l, int r) {
if (l < r) {

int m = l + (r - l) / 2;
mergeSort(arr, l, m);
mergeSort(arr, m + 1, r);
merge(arr, l, m, r);

}
}

Heap Sort:

97

Data Structures Sant Longowal Institute of Engineering and Technology

● Concept: Sorts an array by first building a binary heap, either max-heap (for ascending
order) or min-heap (for descending order), and then repeatedly extracting the root
(maximum or minimum element).

● Time Complexity: O(n log n), where n is the number of elements.
● Advantages: More space-efficient compared to merge sort.
● Disadvantages: Not a stable sorting algorithm, as the relative order of equal elements

may not be preserved.

void heapify(int arr[], int n, int i) {
int largest = i;
int left = 2 * i + 1;
int right = 2 * i + 2;

if (left < n && arr[left] > arr[largest])
largest = left;

if (right < n && arr[right] > arr[largest])
largest = right;

if (largest != i) {
int temp = arr[i];
arr[i] = arr[largest];
arr[largest] = temp;
heapify(arr, n, largest);

}
}

void heapSort(int arr[], int n) {
for (int i = n / 2 - 1; i >= 0; i--)

heapify(arr, n, i);

for (int i = n - 1; i > 0; i--) {
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp

98

Data Structures Sant Longowal Institute of Engineering and Technology

Comparison of Sorting Algorithms

99

Data Structures Sant Longowal Institute of Engineering and Technology

Algorith
m

Time
Complexit

y

Space
Complexit

y

Stabilit
y

Best Use
Case

Advantages Disadvantage
s

Bubble
Sort

Best: O(n) O(1) Yes Small
datasets or
nearly
sorted
arrays

Simple to
implement,
stable, and
detects
small issues
in nearly
sorted data.

Inefficient for
large datasets
with a
worst-case
time
complexity of
O(n²).

Average:
O(n²)

Worst:
O(n²)

Selection
Sort

Best: O(n²) O(1) No Small
datasets
where
memory is
constraine
d

Simple to
implement,
low memory
usage.

Always has
O(n²) time
complexity,
even for
already sorted
arrays.

Average:
O(n²)

Worst:
O(n²)

Insertion
Sort

Best: O(n) O(1) Yes Nearly
sorted
datasets

Efficient for
small
datasets or
nearly
sorted
arrays.
Stable and
simple.

O(n²) time
complexity for
unsorted
arrays.

Average:
O(n²)

Worst:
O(n²)

100

Data Structures Sant Longowal Institute of Engineering and Technology

Quick
Sort

Best: O(n
log n)

O(log n) No Large
datasets
with
random
distributio
n

Very
efficient for
large
datasets,
faster than
merge sort
in practice.
Divide-and-
conquer
approach.

Worst-case
time
complexity of
O(n²) if pivot
is poorly
chosen.

Average:
O(n log n)

Recursive
approach,
requiring
additional
stack space for
function calls.

Worst:
O(n²)

Merge
Sort

Best: O(n
log n)

O(n) Yes Linked
lists or
large
datasets
where
stability is
crucial

Always O(n
log n) time
complexity
regardless of
input. Stable
and efficient
for large
datasets.
Suitable for
linked lists
and external
sorting.

Requires extra
space
proportional to
the size of the
array.

Average:
O(n log n)

Worst: O(n
log n)

101

Data Structures Sant Longowal Institute of Engineering and Technology

Heap
Sort

Best: O(n
log n)

O(1) No Large
datasets
where
memory
usage is a
concern
and
stability is
not
required

Doesn't
require
additional
memory.
Always O(n
log n) time
complexity.
Efficient for
large
datasets,
especially
when
memory
space is
limited.

Not stable,
and slower
than quick sort
in practice.
Complex to
implement.

Average:
O(n log n)

Worst: O(n
log n)

Radix
Sort

Best:
O(nk)

O(n + k) Yes Sorting
integers or
strings
when the
length of
the
elements
(k) is small
compared
to the
number of
elements
(n)

Efficient for
sorting
integers or
strings.
Stable and
non-compar
ative. Works
well when
range of
input data is
known and
fixed.

Limited to
certain types
of data (e.g.,
integers,
strings) and
can require
additional
space.
Depends on
digit length
and base.

Average:
O(nk)

Worst:
O(nk)

Key Points of Comparison:

1. Time Complexity:

102

Data Structures Sant Longowal Institute of Engineering and Technology

○ Best Performers: Quick Sort, Merge Sort, and Heap Sort have average time
complexities of O(n log n), making them efficient for large datasets.

○ Slow Performers: Bubble Sort, Selection Sort, and Insertion Sort have O(n²)
worst-case time complexities, making them less suitable for large arrays.

2. Space Complexity:
○ In-Place Algorithms: Algorithms like Quick Sort, Heap Sort, and Bubble Sort

have O(1) space complexity.
○ Extra Space: Merge Sort requires O(n) space due to the need to merge arrays,

while Radix Sort also requires extra space based on the number of digits.
3. Stability:

○ Stable Algorithms: Insertion Sort, Merge Sort, Radix Sort, and Bubble Sort are
stable, meaning they maintain the relative order of equal elements.

○ Unstable Algorithms: Quick Sort, Selection Sort, and Heap Sort are unstable by
default.

4. Efficiency:
○ Quick Sort is often preferred for large datasets due to its average O(n log n) time

complexity and practical efficiency.
○ Merge Sort is a good choice when stability is important or for linked lists.
○ Heap Sort is useful in memory-constrained environments.

5. Best Use Cases:
○ Bubble Sort & Insertion Sort: Good for small or nearly sorted datasets.
○ Quick Sort & Merge Sort: Excellent for large datasets.
○ Heap Sort: Efficient when space is limited, and stability is not a concern.
○ Radix Sort: Good for integer or string sorting when the dataset fits its constraints.

Thank you.

Dr. Amar Nath

AP, CSE

103

