

Course Material

for

Subject Title: Computer Programming

Subject Code:

CS-214

Prepared by:

Dr. Preetpal Kaur Buttar

Assistant Professor (CSE)

Department of Computer Science & Engineering

Sant Longowal Institute of Engineering & Technology,

Longowal

Title of the course : Computer Programming

Subject Code : CS-214

Weekly load : 7 Hrs

Credit : 5 (Lecture 3, Practical 2) LTP 3-0-4

Course Outcomes: At the end of the course, the student will be able to:

CO1 Use different data types & design programs involving decision structures, loops and functions.

CO2 Understand the concept of arrays, structures and union through which derived data types can be

used, pointers dealing with memory management and file handling for permanent storage of data

and record.

CO3 Understand the basic concepts of C programming which provides students with the means of

writing efficient code compile & debug programs in C language.

CO/PO Mapping : (Strong(S)/Medium(M)/Weak(W) indicates strength of correlation)

COs
Programme Outcomes (POs)

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10

CO1 S M S S

CO2 S S M S

CO3 S M S S

Theory

Unit Main Topics Course outlines Lecture(s)

Unit-1 1. Introduction Steps in development of a program, Flow charts, Algorithm

and Program Debugging.

06

2. Program

Structure

I/O statements, assign statements. Constants, variables and

data types, Operators and Expressions, Standards and

Formatted, Use of Header & Library files.

06

3. Control

Structures

Introduction, Decision making with IF – statement, IF – Else

and Nested IF, While and do-while, for loop, Break and

switch statements.

10

4. Functions Introduction to functions, Global and Local Variables,

Function Declaration, Standard functions, Parameters and

Parameter Passing, Call – by value/reference, Recursion.

06

Unit-2 5. Arrays Introduction to Arrays, Array Declaration and Initialization,

Single and Multidimensional Array. Arrays of characters.

06

 6. Structures and

Unions

Declaration of structures, Accessing structure members,

Structure Initialization, Arrays of structures, Unions.

04

7. Pointers Introduction to Pointers, Address operator and pointers,

Declaring and Initializing pointers, Assignment through

pointers, Pointers and Arrays.

06

8. Files Introduction, File reading/writing in different modes, File

manipulation using standard function types
04

Total = 48

Recommended books:

1. Salaria RS, Application Programming in C, Khanna Book Publishing Co (P) Ltd. New Delhi

2. Schaum Series, Programming in C, McGraw Hills Publishers, New York

3. Yashwant Kanetkar, Exploring – BPB Publications, New Delhi

Table of Contents

Chapter 1 Introduction ... 1

1.1 Steps for problem solving ... 1

1.2 Flow of control .. 2

1.3 Representation of algorithms .. 4

1.4 Program debugging ... 5

1.5 Basic program structure .. 7

Chapter 2 Program Structure .. 11

2.1 Identifiers and their rules .. 11

2.2 Keywords .. 13

2.3 Constants ... 13

2.4 Variables ... 17

2.5 Comments ... 23

2.6 Data types .. 25

2.7 Operators ... 32

2.8 Expressions ... 46

2.9 Type conversion .. 47

2.10 Statements ... 50

2.11 Use of header and library files .. 53

Chapter 3 Control Structures .. 65

3.1 Introduction ... 65

3.2 Decision making with if, if…else, and nested ifs ... 65

3.3 The while loop ... 73

3.4 The do…while loop... 75

3.5 The for loop .. 77

3.6 The break statement ... 80

3.7 The continue statement .. 81

3.8 The switch statement ... 82

Chapter 4 Functions ... 86

4.1 Introduction to functions ... 86

4.2 Types of functions ... 89

4.3 Passing parameters to functions .. 91

4.4 Global and local variables ... 93

4.5 Recursion .. 95

Chapter 5 Arrays .. 103

5.1 Introduction to arrays .. 103

5.2 C array declaration .. 103

5.3 C array initialization .. 104

5.4 Accessing array elements .. 105

5.5 Updating array elements ... 106

5.6 C array traversal .. 106

5.7 How to use arrays in C? .. 106

5.8 Types of arrays in C .. 107

5.9 Relationship between arrays and pointers ... 110

5.10 Passing an array to a function in C .. 111

5.11 Returning an array from a function in C ... 112

5.12 Properties of arrays in C .. 113

5.13 Examples of arrays in C .. 114

5.14 Advantages and disadvantages of arrays in C ... 116

Chapter 6 Structures and Unions .. 117

6.1 C structure declaration .. 117

6.2 C structure definition .. 117

6.3 Accessing structure members .. 117

6.4 Initializing structure members... 118

6.5 Nested structures ... 120

6.6 Array of structures .. 122

6.7 Uses of structures in C .. 124

6.8 Limitations of C structures .. 124

6.9 Unions ... 125

6.10 Difference between C structure and C union .. 128

Chapter 7 Pointers .. 129

7.1 Syntax of C pointers .. 129

7.2 How to use pointers? ... 129

7.3 Types of pointers in C ... 131

7.4 Size of pointers in C .. 133

7.5 C pointers arithmetic ... 134

7.6 C pointers and arrays ... 135

7.7 Uses of pointers in C ... 137

7.8 Advantages and disadvantages of pointers ... 137

Chapter 8 Files .. 138

8.1 Need for file handling in C ... 138

8.2 Types of files ... 138

8.3 The FILE pointer (FILE*) ... 138

8.4 Opening (creating) a file ... 138

8.5 File opening modes ... 139

8.6 Writing to a text file .. 141

8.7 Reading from a text file .. 144

8.8 Binary read and write functions .. 146

8.9 Writing to a binary file .. 146

8.10 Reading from a binary file .. 147

1

Chapter 1

Introduction

1.1 Steps for problem solving

Introduction:

A program is a set of instructions that a computer can execute to perform a specific task. Developing a

program involves several stages, including defining the problem, planning, designing, coding, testing, and

maintenance. In this lecture, we will explore each of these stages in detail.

Defining the Problem:

The first step in developing a program is to define the problem that the program is intended to solve. This

involves identifying the requirements of the program, such as its inputs, outputs, and desired behavior. The

problem definition helps to determine the scope of the project and provides a clear understanding of what

the program should accomplish.

Planning:

Once the problem has been defined, the next step is to create a plan for how to solve it. This involves

breaking down the problem into smaller, manageable tasks, determining the resources required, and

creating a timeline for completion. The plan provides a roadmap for the development process and helps to

ensure that the program is developed in an efficient and effective manner.

Designing:

The design phase is where the program's architecture and structure are created. This involves creating a

detailed plan for how the program will be organized, including the algorithms that will be used to perform

the necessary tasks. The design should take into account the requirements of the problem and the constraints

of the hardware and software platforms on which the program will run.

Coding:

The coding phase is where the program is actually written. During this phase, the code is written in a

programming language, such as Python, Java, or C++. The code should be written in a way that is easy to

understand and maintain, and should be organized in a logical and modular fashion. It is also important to

write and document the code in such a way that it can be easily understood and modified by others.

Testing:

Once the program has been written, it is time to test it to ensure that it works as intended. This involves

running the program with various inputs and comparing the results to the expected outputs. If the program

does not produce the desired results, the code may need to be modified and tested again. The testing phase

also helps to identify any bugs or errors in the code and ensure that the program is functioning correctly.

Maintenance:

Once the program has been tested and is working as intended, it is ready to be released. However, the

development process does not end there. The program may need to be updated and modified in the future

to accommodate changes in the hardware or software platforms on which it runs, or to add new features.

2

The maintenance phase involves updating the program to ensure that it continues to work as intended and

addressing any issues that may arise.

Conclusion:

The development of a program involves several stages, including defining the problem, planning, designing,

coding, testing, and maintenance. Each of these stages is important in ensuring that the program is

developed in an efficient and effective manner and that it functions correctly. Understanding the steps in

the development of a program is critical for anyone who is interested in creating software applications.

1.2 Flow of control

Introduction:

A flowchart is a diagram that represents a process or algorithm in a graphical and sequential manner.

Flowcharts are used to visualize and document complex processes, making it easier to understand and

analyze them. They are also useful for communicating ideas and designs to others, as well as for testing

and debugging programs. In this lecture, we will explore flowcharts in more detail and use an example to

demonstrate their use.

Components of a Flowchart:

A flowchart consists of several basic components, including:

• Start/Stop symbols: These symbols indicate the start and end of the process or algorithm being

represented by the flowchart.

Fig. 1.1: A start/stop symbol

• Input/Output: A parallelogram denotes any function of input/output type. Program instructions

that take input from input devices and display output on output devices are indicated with

parallelogram in a flowchart.

Fig. 1.2: An input/output symbol

• Process symbols: These symbols represent a step in the process or algorithm, such as a calculation

or decision.

Fig. 1.3: A process symbol

• Decision symbols: These symbols represent a decision point in the process or algorithm, where the

flow of control is determined based on the outcome of a condition.

3

Fig. 1.4: A decision symbol

• Connector symbols: These symbols represent the flow of control between steps in the process or

algorithm, showing the order in which the steps are executed.

Fig. 1.5: A connector symbol

• Flow lines: Flow lines indicate the exact sequence in which instructions are executed. Arrows

represent the direction of flow of control and relationship among different symbols of flowchart.

Rules For Creating Flowchart:

A flowchart is a graphical representation of an algorithm. It should follow some rules while creating a

flowchart:

Rule 1: Flowchart opening statement must be ‘start’ keyword.

Rule 2: Flowchart ending statement must be ‘end’ keyword.

Rule 3: All symbols in the flowchart must be connected with an arrow line.

Rule 4: The decision symbol in the flowchart is associated with the arrow line.

Advantages of Flowchart:

• Flowcharts are a better way of communicating the logic of the system.

• Flowcharts act as a guide for blueprint during program designed.

• Flowcharts help in debugging process.

• With the help of flowcharts programs can be easily analyzed.

• It provides better documentation.

• Flowcharts serve as a good proper documentation.

• Easy to trace errors in the software.

• Easy to understand.

• The flowchart can be reused for inconvenience in the future.

• It helps to provide correct logic.

Disadvantages of Flowchart:

• It is difficult to draw flowcharts for large and complex programs.

• There is no standard to determine the amount of detail.

• Difficult to reproduce the flowcharts.

• It is very difficult to modify the Flowchart.

• Making a flowchart is costly.

• Some developer thinks that it is waste of time.

• It makes software processes low.

• If changes are done in software, then the flowchart must be redrawn.

4

Example:

To demonstrate the use of flowcharts, let's consider a simple example of a program that draws a flowchart

to input two numbers from the user and display the largest of two numbers. The flowchart for this program

would look something like this:

Fig. 1.6: A flowchart to input two numbers from the user and display the largest of two numbers

Conclusion:

Flowcharts are a useful tool for visualizing and documenting complex processes and algorithms. They help

to communicate ideas and designs to others, as well as for testing and debugging programs. The components

of a flowchart, including start/stop symbols, process symbols, decision symbols, and connector symbols,

are used to represent the steps involved in a process or algorithm in a graphical and sequential manner. By

using an example, we have demonstrated how flowcharts can be used to represent a simple program for

calculating the total cost of a purchase.

1.3 Representation of algorithms

Introduction:

An algorithm is a set of well-defined steps used to solve a problem or accomplish a task. An algorithm can

be thought of as a recipe or a set of instructions that can be followed to achieve a desired outcome.

Algorithms are used in computer programming to solve complex problems and accomplish tasks in a

5

systematic and efficient manner. In this lecture, we will explore algorithms in more detail and use an

example to demonstrate their use.

Characteristics of a Good Algorithm:

A good algorithm should have the following characteristics:

• Well-defined: The steps in the algorithm should be well-defined and clear, with no ambiguity or

vagueness.

• Feasible: The algorithm should be able to be executed with the resources available, such as time,

memory, and processing power.

• Efficient: The algorithm should be able to solve the problem in an acceptable amount of time, with

a reasonable use of resources.

• Optimal: The algorithm should provide the best possible solution for the problem, given the

constraints and available resources.

• Verifiable: The algorithm should have a clear way of verifying its solution, with a clear and well-

defined output.

Example:

To demonstrate the use of algorithms, let's consider a simple example of a program that finds the maximum

value in a list of numbers. The algorithm for this program would look something like this:

1. Start

2. Input a list of numbers

3. Set the maximum value to the first number in the list

4. For each number in the list, starting from the second number:

a) If the current number is greater than the maximum value, set the maximum value to the current

number

5. Output the maximum value

6. Stop

This algorithm provides a set of well-defined steps for finding the maximum value in a list of numbers. The

flow of control starts with the start step and moves to step 2, where the list of numbers is input. In step 3,

the maximum value is set to the first number in the list. Step 4 is a loop that iterates over each number in

the list, starting from the second number. In each iteration of the loop, the algorithm checks if the current

number is greater than the maximum value, and if so, sets the maximum value to the current number.

Finally, in step 5, the maximum value is output and the algorithm stops.

Conclusion:

Algorithms are a fundamental tool for solving problems and accomplishing tasks in computer

programming. A good algorithm should be well-defined, feasible, efficient, optimal, and verifiable. By

using an example, we have demonstrated how algorithms can be used to represent a simple program for

finding the maximum value in a list of numbers. The use of algorithms is essential for designing and

implementing efficient and effective solutions to complex problems in computer science and beyond.

1.4 Program debugging

Introduction:

6

Debugging is the process of finding and fixing errors in a program. Debugging is an important part of the

software development process and is crucial for ensuring the program runs correctly and meets the desired

requirements. In this lecture, we will explore the basics of debugging and the steps involved in debugging

a program.

Types of Errors:

There are two main types of errors in a program: syntax errors and logic errors.

• Syntax Errors: These are errors in the way the code is written and include mistakes such as

misspelled keywords, missing punctuation, or incorrect indentation. Syntax errors prevent the

program from running, and they are usually caught by the compiler or interpreter.

• Logic Errors: These are errors in the way the code is written that do not prevent the program from

running but produce incorrect results. Logic errors are more difficult to detect than syntax errors

and require a careful examination of the code and the output.

Debugging Techniques:

There are several debugging techniques that can be used to find and fix errors in a program, including:

• Print Statements: Adding print statements to the code is a simple way to observe the behavior of

the program and check the values of variables as the program runs.

• Debugging Tools: Many programming environments provide debugging tools that allow you to

step through the code, set breakpoints, and examine the values of variables.

• Test Cases: Writing test cases is a good way to verify the behavior of the program and can help

identify logic errors.

• Code Reviews: Having another person review your code can be a valuable way to find errors and

improve the overall quality of the code.

• Rubber Duck Debugging: This technique involves explaining the code to a rubber duck or another

object as if you were explaining it to another person. The process of explaining the code can help

identify errors and improve the understanding of the code.

Debugging Process:

The debugging process typically involves the following steps:

• Reproduce the error: This step involves creating a test case that consistently produces the error.

• Identify the source of the error: This step involves examining the code and output to determine

the source of the error.

• Plan a solution: This step involves determining a plan for fixing the error, such as correcting the

code or changing the approach.

• Implement the solution: This step involves making the necessary changes to the code.

• Test the solution: This step involves testing the program with the test case to verify that the error

has been fixed.

• Repeat the process: This step may be necessary if the solution does not solve the problem or if the

solution creates new errors.

Conclusion:

Debugging is an essential part of the software development process and is crucial for ensuring the program

runs correctly and meets the desired requirements. There are several debugging techniques that can be used

7

to find and fix errors in a program, including print statements, debugging tools, test cases, code reviews,

and rubber duck debugging. The debugging process typically involves reproducing the error, identifying

the source of the error, planning a solution, implementing the solution, testing the solution, and repeating

the process as necessary. By following these steps, you can find and fix errors in your code and produce a

high-quality program.

1.5 Basic program structure

The basic structure of a C program is divided into 6 parts which makes it easy to read, modify, document,

and understand in a particular format. C program must follow the below-mentioned outline in order to

successfully compile and execute. Debugging is easier in a well-structured C program.

Sections of the C Program:

There are 6 basic sections responsible for the proper execution of a program. Sections are mentioned below:

1. Documentation

2. Preprocessor Section

3. Definition

4. Global Declaration

5. main() Function

6. Sub Programs

1. Documentation

This section consists of the description of the program, the name of the program, and the creation date and

time of the program. It is specified at the start of the program in the form of comments. Documentation can

be represented as:

// description, name of the program, programmer name, date, time etc.

Or

/*

 description, name of the program, programmer name, date, time etc.

*/

Anything written as comments will be treated as documentation of the program and this will not interfere

with the given code. Basically, it gives an overview to the reader of the program.

2. Preprocessor Section

All the header files of the program will be declared in the preprocessor section of the program. Header files

help us to access other’s improved code into our code. A copy of these multiple files is inserted into our

program before the process of compilation.

Example:

#include<stdio.h>

#include<math.h>

3. Definition

8

Preprocessors are the programs that process our source code before the process of compilation. There are

multiple steps which are involved in the writing and execution of the program. Preprocessor directives start

with the ‘#’ symbol. The #define preprocessor is used to create a constant throughout the program.

Whenever this name is encountered by the compiler, it is replaced by the actual piece of defined code.

Example:

#define long long ll

4. Global Declaration

The global declaration section contains global variables, function declaration, and static variables. Variables

and functions which are declared in this scope can be used anywhere in the program.

Example:

int num = 18;

5. main() Function

Every C program must have a main function. The main() function of the program is written in this section.

Operations like declaration and execution are performed inside the curly braces of the main program. The

return type of the main() function can be int as well as void too. void() main tells the compiler that the

program will not return any value. The int main() tells the compiler that the program will return an

integer value.

Example:

void main()

or

int main()

6. Sub Programs

User-defined functions are called in this section of the program. The control of the program is shifted to the

called function whenever they are called from the main or outside the main() function. These are specified

as per the requirements of the programmer.

Example:

int sum(int x, int y)

{

 return x+y;

}

Structure of C Program with example

Example: Below C program to find the sum of 2 numbers:

// Documentation

/**

 * file: sum.c

9

 * author: you

 * description: program to find sum.

 */

// Link

#include <stdio.h>

// Definition

#define X 20

// Global Declaration

int sum(int y);

// Main() Function

int main(void)

{

 int y = 55;

 printf("Sum: %d", sum(y));

 return 0;

}

// Subprogram

int sum(int y)

{

 return y + X;

}

Output

Sum: 75

Explanation of the above Program

Below is the explanation of the above program. With a description explaining the program’s meaning and

use.

Sections Description

/**

*file: sum.c

*author: you

*description: program to

find sum.

*/

It is the comment section and is part of the description section

of the code.

#include<stdio.h>

Header file which is used for standard input-output. This is the

preprocessor section.

10

Sections Description

#define X 20

This is the definition section. It allows the use of constant X in

the code.

int sum(int y)

This is the global declaration section includes the function

declaration that can be used anywhere in the program.

int main()
main() is the first function that is executed in the C program.

{…}

These curly braces mark the beginning and end of the main

function.

printf(“Sum: %d”, sum(y));
printf() function is used to print the sum on the screen.

return 0;

We have used int as the return type so we have to return 0 which

states that the given program is free from the error and it can be

exited successfully.

int sum(int y)

{

 return y + X;

}

This is the subprogram section. It includes the user-defined

functions that are called in the main() function.

Steps involved in the Compilation and execution of a C program:

• Program Creation

• Compilation of the program

• Execution of the program

• The output of the program

11

Chapter 2

Program Structure

2.1 Identifiers and their rules:

In C programming language, identifiers are the building blocks of a program. Identifiers are unique names

that are assigned to variables, structs, functions, and other entities. They are used to uniquely identify the

entity within the program. In the below example “section” is an identifier assigned to the string type value.

char section = 'A';

For the naming of identifiers, we have a set of rules in C to be followed for valid identifier names.

Rules to Name an Identifier in C

A programmer has to follow certain rules while naming variables. For the valid identifier, we must follow

the given below set of rules.

1. An identifier can include letters (a-z or A-Z), and digits (0-9).

2. An identifier cannot include special characters except the ‘_’ underscore.

3. Spaces are not allowed while naming an identifier.

4. An identifier can only begin with an underscore or letters.

5. We cannot name identifiers the same as keywords because they are reserved words to perform a

specific task. For example, printf, scanf, int, char, struct, etc. If we use a keyword’s name as an

identifier the compiler will throw an error.

6. The identifier must be unique in its namespace.

7. C language is case-sensitive so, ‘name’ and ‘NAME’ are different identifiers.

The below image shows some valid and invalid identifiers in C language.

Fig. 2.1: Valid and Invalid Identifiers in C

12

Examples of Identifiers in C

In the below code, identifiers are named by following all the rules for valid identifiers. We use identifiers

to name a structure, function, character data type, double data type, etc. If you are not aware of structures

and functions in C then don’t worry you will learn them soon. The below code ran successfully without

throwing any errors as we have followed all the rules.

// C program to illustrate the identifiers

#include <stdio.h>

// here student identifier is used to refer the below structure

struct _student {

 int id;

 int class;

 char section;

};

// isEven identifier is used to call the below function

void isEven(int num)

{

 if(num%2==0){

 printf("It is an Even Number");

 }

 else{

 printf("It is not an Even Number");

 }

}

void main()

{

 // identifiers used as variable names.

 int studentAge = 20;

 double Marks = 349.50;

 // Calling isEven function.

 isEven(453);

}

Output

It is not an Even Number

What happens if we use a keyword as an Identifier in C?

In the below code, we have used const as an identifier which is a keyword in C. This will result in an error

in the output.

#include <stdio.h>

int main() {

13

 // used keyword as an identifier

 int const = 90;

 return 0;

}

Output

./Solution.c: In function 'main':

./Solution.c:5:14: error: expected identifier or '(' before '=' token

 int const = 90;

 ^

2.2 Keywords

In C Programming language, there are many rules to avoid different types of errors. One of such rules is

not able to declare variable names with auto, long, etc. This is all because these are keywords. Let us

check all keywords in C language.

Keywords are predefined or reserved words that have special meanings to the compiler. These are part of

the syntax and cannot be used as identifiers in the program. A list of keywords in C or reserved words in

the C programming language are mentioned below:

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

2.3 Constants

The constants in C are the read-only variables whose values cannot be modified once they are declared in

the C program. The type of constant can be an integer constant, a floating pointer constant, a string constant,

or a character constant. In C language, the const keyword is used to define the constants.

What is a constant in C?

As the name suggests, a constant in C is a variable that cannot be modified once it is declared in the program.

We cannot make any change in the value of the constant variables after they are defined.

How to Define Constant in C?

We define a constant in C language using the const keyword. Also known as a const type qualifier, the

const keyword is placed at the start of the variable declaration to declare that variable as a constant.

Syntax to Define Constant

14

const data_type var_name = value;

Example of Constants in C

// C program to illustrate constant variable definition

#include <stdio.h>

int main()

{

 // defining integer constant using const keyword

 const int int_const = 25;

 // defining character constant using const keyword

 const char char_const = 'A';

 // defining float constant using const keyword

 const float float_const = 15.66;

 printf("Printing value of Integer Constant: %d\n",

 int_const);

 printf("Printing value of Character Constant: %c\n",

 char_const);

 printf("Printing value of Float Constant: %f",

 float_const);

 return 0;

}

Output

Printing value of Integer Constant: 25

Printing value of Character Constant: A

Printing value of Float Constant: 15.660000

One thing to note here is that we must initialize the constant variables at declaration. Otherwise, the

variable will store some garbage value, and we won’t be able to change it. The following image describes

examples of incorrect and correct variable definitions.

Fig. 2.2 How to declare C constants

Types of Constants in C

The type of the constant is the same as the data type of the variables. Following is the list of the types of

constants

15

• Integer Constant

• Character Constant

• Floating Point Constant

• Double Precision Floating Point Constant

• Array Constant

• Structure Constant

We just have to add the const keyword at the start of the variable declaration.

Properties of Constant in C

The important properties of constant variables in C defined using the const keyword are as follows:

1. Initialization with Declaration

We can only initialize the constant variable in C at the time of its declaration. Otherwise, it will store the

garbage value.

2. Immutability

The constant variables in c are immutable after its definition, i.e., they can be initialized only once in the

whole program. After that, we cannot modify the value stored inside that variable.

// C Program to demonstrate the behaviour of constant variable

#include <stdio.h>

int main()

{

 // declaring a constant variable

 const int var;

 // initializing constant variable var after declaration

 var = 20;

 printf("Value of var: %d", var);

 return 0;

}

Output

In function 'main':

10:9: error: assignment of read-only variable 'var'

10 | var = 20;

 | ^

Difference Between Constants and Literals

The constant and literals are often confused as the same. But in C language, they are different entities and

have different semantics. The following table lists the differences between the constants and literals in C:

16

Constant Literals

Constants are variables that cannot be modified

once declared.

Literals are the fixed values that define

themselves.

Constants are defined by using the const keyword

in C. They store literal values in themselves.

They themselves are the values that are assigned

to the variables or constants.

We can determine the address of constants.
We cannot determine the address of a literal

except string literal.

They are lvalues. They are rvalues.

Example: const int c = 20. Example: 24,15.5, ‘a’, “Geeks”, etc.

Defining Constant using #define Preprocessor

We can also define a constant in C using #define preprocessor. The constants defined using #define

are macros that behave like a constant. These constants are not handled by the compiler, they are handled

by the preprocessor and are replaced by their value before compilation.

#define const_name value

Example of Constant Macro

// C Program to define a constant using #define

#include <stdio.h>

#define pi 3.14

int main()

{

 printf("The value of pi: %.2f", pi);

 return 0;

}

Output

The value of pi: 3.14

Note: This method for defining constant is not preferred as it may introduce bugs and make the code

difficult to maintain.

17

2.4 Variables

A variable in C language is the name associated with some memory location to store data of different

types. There are many types of variables in C depending on the scope, storage class, lifetime, type of data

they store, etc. A variable is the basic building block of a C program that can be used in expressions as a

substitute in place of the value it stores.

What is a variable in C?

A variable in C is a memory location with some name that helps store some form of data and retrieves it

when required. We can store different types of data in the variable and reuse the same variable for storing

some other data any number of times.

They can be viewed as the names given to the memory location so that we can refer to it without having to

memorize the memory address. The size of the variable depends upon the data type it stores.

C Variable Syntax

The syntax to declare a variable in C specifies the name and the type of the variable.

data_type variable_name = value; // defining single variable

 or

data_type variable_name1, variable_name2; // defining multiple variables

Here,

• data_type: Type of data that a variable can store.

• variable_name: Name of the variable given by the user.

• value: value assigned to the variable by the user.

Example

int var; // integer variable

char a; // character variable

float fff; // float variables

Note: C is a strongly typed language so all the variables types must be specified before using them.

There are 3 aspects of defining a variable:

1. Variable Declaration

2. Variable Definition

3. Variable Initialization

1. C Variable Declaration

Variable declaration in C tells the compiler about the existence of the variable with the given name and data

type. When the variable is declared, an entry in symbol table is created and memory will be allocated at the

time of initialization of the variable.

2. C Variable Definition

18

In the definition of a C variable, the compiler allocates some memory and some value to it. A defined

variable will contain some random garbage value till it is not initialized.

Example

int var;

char var2;

Note: Most of the modern C compilers declare and define the variable in single step. Although we can

declare a variable in C by using extern keyword, it is not required in most of the cases.

3. C Variable Initialization

Initialization of a variable is the process where the user assigns some meaningful value to the variable when

creating the variable.

Example

int var = 10; // variable declaration and definition

//(i.e. Variable Initialization)

Difference between Variable Initialization and Assignment

Initialization occurs when a variable is first declared and assigned an initial value. This usually happens

during the declaration of the variable. On the other hand, assignment involves setting or updating the value

of an already declared variable, and this can happen multiple times after the initial initialization.

Example

int a=10; //Variable initialization

a=10; //assignment

How to use variables in C?

The below example demonstrates how we can use variables in C language.

// C program to demonstrate the declaration, definition and

// initialization

#include <stdio.h>

int main()

{

 // declaration with definition

 int defined_var;

 printf("Defined_var: %d\n", defined_var);

 // assignment

 defined_var = 12;

 // declaration + definition + initialization

 int ini_var = 25;

 printf("Value of defined_var after assignment: %d\n", defined_var);

19

 printf("Value of ini_var: %d", ini_var);

 return 0;

}

Output

Defined_var: 0

Value of defined_var after assignment: 12

Value of ini_var: 25

C Variable Types

The C variables can be classified into the following types:

1. Local Variables

2. Global Variables

3. Static Variables

4. Automatic Variables

5. Extern Variables

6. Register Variables

1. Local Variables in C

A Local variable in C is a variable that is declared inside a function or a block of code. Its scope is limited

to the block or function in which it is declared.

Example of Local Variable in C

// C program to declare and print local variable inside a function.

#include <stdio.h>

void function()

{

 int x = 10; // local variable

 printf("%d", x);

}

int main() { function(); }

Output

10

In the above code, x can be used only in the scope of function(). Using it in the main function will

give an error.

2. Global Variables in C

A Global variable in C is a variable that is declared outside the function or a block of code. Its scope is

the whole program, i.e., we can access the global variable anywhere in the C program after it is declared.

Example of Global Variable in C

// C program to demonstrate use of global variable

20

#include <stdio.h>

int x = 20; // global variable

void function1() { printf("Function 1: %d\n", x); }

void function2() { printf("Function 2: %d\n", x); }

int main()

{

 function1();

 function2();

 return 0;

}

Output

Function 1: 20

Function 2: 20

In the above code, both functions can use the global variable as global variables are accessible by all the

functions.

Note: When we have same name for local and global variable, local variable will be given preference over

the global variable by the compiler.

3. Static Variables in C

A static variable in C is a variable that is defined using the static keyword. It can be defined only once

in a C program and its scope depends upon the region where it is declared (can be global or local).

The default value of static variables is zero.

Syntax of Static Variable in C

static data_type variable_name = initial_value;

As its lifetime is till the end of the program, it can retain its value for multiple function calls as shown in

the example.

Example of Static Variable in C

// C program to demonstrate use of static variable

#include <stdio.h>

void function()

{

 int x = 20; // local variable

 static int y = 30; // static variable

 x = x + 10;

 y = y + 10;

 printf("\tLocal: %d\n\tStatic: %d\n", x, y);

}

21

int main()

{

 printf("First Call\n");

 function();

 printf("Second Call\n");

 function();

 printf("Third Call\n");

 function();

 return 0;

}

Output

First Call

 Local: 30

 Static: 40

Second Call

 Local: 30

 Static: 50

Third Call

 Local: 30

 Static: 60

In the above example, we can see that the local variable will always print the same value whenever the

function will be called whereas the static variable will print the incremented value in each function call.

4. Automatic Variable in C

All the local variables are automatic variables by default. They are also known as auto variables. Their

scope is local and their lifetime is till the end of the block. If we need, we can use the auto keyword to

define the auto variables. The default value of the auto variables is a garbage value.

Syntax of Auto Variable in C

auto data_type variable_name;

 or

data_type variable_name; // in local scope

Example of auto Variable in C

// C program to demonstrate use of automatic variable

#include <stdio.h>

void function()

{

 int x = 10; // local variable (also automatic)

 auto int y = 20; // automatic variable

 printf("Auto Variable: %d", y);

}

int main()

22

{

 function();

 return 0;

}

Output

Auto Variable: 20

In the above example, both x and y are automatic variables. The only difference is that variable y is

explicitly declared with the auto keyword.

5. External Variables in C

External variables in C can be shared between multiple C files. We can declare an external variable

using the extern keyword. Their scope is global and they exist between multiple C files.

Syntax of Extern Variables in C

extern data_type variable_name;

Example of Extern Variable in C

 ----------myfile.h------------

 extern int x=10; //external variable (also global)

 ----------program1.c----------

 #include "myfile.h"

 #include <stdio.h>

 void printValue(){

 printf("Global variable: %d", x);

 }

In the above example, x is an external variable that is used in multiple C files.

6. Register Variables in C

Register variables in C are those variables that are stored in the CPU register instead of the conventional

storage place like RAM. Their scope is local and exists till the end of the block or a function. These

variables are declared using the register keyword. The default value of register variables is a garbage

value.

Syntax of Register Variables in C

register data_type variable_name = initial_value;

Example of Register Variables in C

// C program to demonstrate the definition of register variable

#include <stdio.h>

int main()

{

23

 // register variable

 register int var = 22;

 printf("Value of Register Variable: %d\n", var);

 return 0;

}

Output
Value of Register Variable: 22

NOTE: We cannot get the address of the register variable using addressof (&) operator because they

are stored in the CPU register. The compiler will throw an error if we try to get the address of register

variable.

2.5 Comments

The comments in C are human-readable explanations or notes in the source code of a C program. A

comment makes the program easier to read and understand. These are the statements that are not executed

by the compiler or an interpreter.

It is considered to be a good practice to document our code using comments.

When and Why to use Comments in C programming?

• A person reading a large code will be bemused if comments are not provided about details of the

program.

• C Comments are a way to make a code more readable by providing more descriptions.

• C Comments can include a description of an algorithm to make code understandable.

• C Comments can be used to prevent the execution of some parts of the code.

Types of comments in C

In C there are two types of comments in C language:

• Single-line comment

• Multi-line comment

Types of Comments in C

1. Single-line Comment in C

A single-line comment in C starts with (//) double forward slash. It extends till the end of the line and we

don’t need to specify its end.

Syntax of Single Line C Comment

// This is a single line comment

Example 1: C Program to illustrate single-line comment

// C program to illustrate

// use of single-line comment

24

#include <stdio.h>

int main(void)

{

 // This is a single-line comment

 printf("Welcome");

 return 0;

}

Output:

Welcome

 Comment at End of Code Line

We can also create a comment that displays at the end of a line of code using a single-line comment. But

generally, it’s better to practice putting the comment before the line of code.

// C program to demonstrate commenting after line of code

#include <stdio.h>

int main() {

 // single line comment here

 printf("Welcome"); // comment here

 return 0;

}

Output

Welcome

2. Multi-line Comment in C

The Multi-line comment in C starts with a forward slash and asterisk (/*) and ends with an asterisk and

forward slash (*/). Any text between /* and */ is treated as a comment and is ignored by the compiler.

It can apply comments to multiple lines in the program.

Syntax of Multi-Line C Comment

/*Comment starts

 continues

 continues

 .

 .

 .

Comment ends*/

Example 2: C Program to illustrate the multi-line comment

/* C program to illustrate

use of

multi-line comment */

#include <stdio.h>

25

int main(void)

{

 /*

 This is a

 multi-line comment

 */

 /*

 This comment contains some code which

 will not be executed.

 printf("Code enclosed in Comment");

 */

 printf("Welcome");

 return 0;

}

Output:

Welcome

2.6 Data Types

Each variable in C has an associated data type. It specifies the type of data that the variable can store like

integer, character, floating, double, etc. Each data type requires different amounts of memory and has some

specific operations which can be performed over it. The data type is a collection of data with values having

fixed values, meaning as well as its characteristics.

The data types in C can be classified as follows:

Types Description

Primitive Data

Types

Primitive data types are the most basic data types that are used for representing

simple values such as integers, float, characters, etc.

User Defined Data

Types
The user-defined data types are defined by the user himself.

Derived Types
The data types that are derived from the primitive or built-in datatypes are

referred to as Derived Data Types.

26

Fig 2.3: Data types in C

Different data types also have different ranges up to which they can store numbers. These ranges may vary

from compiler to compiler. Below is a list of ranges along with the memory requirement and format

specifiers on the 32-bit GCC compiler.

Data Type Size (bytes) Range Format Specifier

short int 2 -32,768 to 32,767 %hd

unsigned short int 2 0 to 65,535 %hu

unsigned int 4 0 to 4,294,967,295 %u

int 4 -2,147,483,648 to 2,147,483,647 %d

long int 4 -2,147,483,648 to 2,147,483,647 %ld

unsigned long int 4 0 to 4,294,967,295 %lu

27

Data Type Size (bytes) Range Format Specifier

long long int 8 -(2^63) to (2^63)-1 %lld

unsigned long long int 8 0 to 18,446,744,073,709,551,615 %llu

signed char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

float 4 1.2E-38 to 3.4E+38 %f

double 8 1.7E-308 to 1.7E+308 %lf

long double 16 3.4E-932 to 1.1E+4932 %Lf

Note: The long, short, signed and unsigned are datatype modifiers that can be used with some

primitive data types to change the size or length of the datatype.

The following are some main primitive data types in C:

Integer Data Type

The integer datatype in C is used to store the integer numbers (any number including positive, negative and

zero without decimal part). Octal values, hexadecimal values, and decimal values can be stored in int data

type in C.

• Range: -2,147,483,648 to 2,147,483,647

• Size: 4 bytes

• Format Specifier: %d

Syntax of Integer

We use int keyword to declare the integer variable:

int var_name;

The integer data type can also be used as

• unsigned int: unsigned int data type in C is used to store the data values from zero to

positive numbers but it can’t store negative values like signed int.

28

• short int: It is lesser in size than the int by 2 bytes so can only store values from -32,768 to

32,767.

• long int: Larger version of the int datatype so can store values greater than int.

• unsigned short int: Similar in relationship with short int as unsigned int with

int.

• Note: The size of an integer data type is compiler-dependent. We can use sizeof operator to

check the actual size of any data type.

Example of int

// C program to print Integer data types.

#include <stdio.h>

int main()

{

 // Integer value with positive data.

 int a = 9;

 // integer value with negative data.

 int b = -9;

 // U or u is Used for Unsigned int in C.

 int c = 89U;

 // L or l is used for long int in C.

 long int d = 99998L;

 printf("Integer value with positive data: %d\n", a);

 printf("Integer value with negative data: %d\n", b);

 printf("Integer value with an unsigned int data: %u\n",

 c);

 printf("Integer value with a long int data: %ld", d);

 return 0;

}

Output

Integer value with positive data: 9

Integer value with negative data: -9

Integer value with an unsigned int data: 89

Integer value with a long int data: 99998

Character Data Type

Character data type allows its variable to store only a single character. The size of the character is 1 byte.

It is the most basic data type in C. It stores a single character and requires a single byte of memory in almost

all compilers.

• Range: (-128 to 127) or (0 to 255)

• Size: 1 byte

29

• Format Specifier: %c

Syntax of char

The char keyword is used to declare the variable of character type:

char var_name;

Example of char

// C program to print Integer data types.

#include <stdio.h>

int main()

{

 char a = 'a';

 char c;

 printf("Value of a: %c\n", a);

 a++;

 printf("Value of a after increment is: %c\n", a);

 // c is assigned ASCII values

 // which corresponds to the

 // character 'c'

 // a-->97 b-->98 c-->99

 // here c will be printed

 c = 99;

 printf("Value of c: %c", c);

 return 0;

}

Output

Value of a: a

Value of a after increment is: b

Value of c: c

Float Data Type

In C programming float data type is used to store floating-point values. Float in C is used to store decimal

and exponential values. It is used to store decimal numbers (numbers with floating point values) with single

precision.

• Range: 1.2E-38 to 3.4E+38

• Size: 4 bytes

• Format Specifier: %f

Syntax of float

30

The float keyword is used to declare the variable as a floating point:

float var_name;

Example of Float

// C Program to demonstrate use

// of Floating types

#include <stdio.h>

int main()

{

 float a = 9.0f;

 float b = 2.5f;

 // 2x10^-4

 float c = 2E-4f;

 printf("%f\n", a);

 printf("%f\n", b);

 printf("%f", c);

 return 0;

}

Output

9.000000

2.500000

0.000200

Double Data Type

A double data type in C is used to store decimal numbers (numbers with floating point values) with double

precision. It is used to define numeric values which hold numbers with decimal values in C.

The double data type is basically a precision sort of data type that is capable of holding 64 bits of decimal

numbers or floating points. Since double has more precision as compared to that float then it is much more

obvious that it occupies twice the memory occupied by the floating-point type. It can easily accommodate

about 16 to 17 digits after or before a decimal point.

• Range: 1.7E-308 to 1.7E+308

• Size: 8 bytes

• Format Specifier: %lf

Syntax of Double

The variable can be declared as double precision floating point using the double keyword:

double var_name;

Example of Double

// C Program to demonstrate

// use of double data type

31

#include <stdio.h>

int main()

{

 double a = 123123123.00;

 double b = 12.293123;

 double c = 2312312312.123123;

 printf("%lf\n", a);

 printf("%lf\n", b);

 printf("%lf", c);

 return 0;

}

Output

123123123.000000

12.293123

2312312312.123123

Void Data Type

The void data type in C is used to specify that no value is present. It does not provide a result value to its

caller. It has no values and no operations. It is used to represent nothing. Void is used in multiple ways as

function return type, function arguments as void, and pointers to void.

Syntax:

// function return type void

void exit(int check);

// Function without any parameter can accept void.

int print(void);

Example of Void

// C program to demonstrate

// use of void pointers

#include <stdio.h>

int main()

{

 int val = 30;

 void* ptr = &val;

 printf("%d", *(int*)ptr);

 return 0;

}

Output

32

30

2.7 Operators

An operator in C can be defined as the symbol that helps us to perform some specific mathematical,

relational, bitwise, conditional, or logical computations on values and variables. The values and variables

used with operators are called operands. So we can say that the operators are the symbols that perform

operations on operands.

Fig 2.4: Different kinds of operators in C

Types of Operators in C

C language provides a wide range of operators that can be classified into 6 types based on their functionality:

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise Operators

5. Assignment Operators

6. Other Operators

2.7.1 Arithmetic operators: The arithmetic operators are used to perform arithmetic/mathematical

operations on operands. There are 8 arithmetic operators in C language:

S. No. Symbol Operator Description Syntax

1
+ Plus

Adds two numeric

values.
a + b

2

– Minus

Subtracts right

operand from left

operand.

a – b

33

S. No. Symbol Operator Description Syntax

3
* Multiply

Multiply two

numeric values.
a * b

4
/ Divide

Divide two

numeric values.
a / b

5

% Modulus

Returns the

remainder after

diving the left

operand with the

right operand.

a % b

6

+ Unary Plus

Used to specify

the positive

values.

+a

7
– Unary Minus

Flips the sign of

the value.
-a

8

++ Increment

Increases the value

of the operand by

1.

a++

9

— Decrement

Decreases the

value of the

operand by 1.

a–

Example:

// C program to illustrate the arithmetic operators

#include <stdio.h>

int main()

{

 int a = 25, b = 5;

34

 // using operators and printing results

 printf("a + b = %d\n", a + b);

 printf("a - b = %d\n", a - b);

 printf("a * b = %d\n", a * b);

 printf("a / b = %d\n", a / b);

 printf("a % b = %d\n", a % b);

 printf("+a = %d\n", +a);

 printf("-a = %d\n", -a);

 printf("a++ = %d\n", a++);

 printf("a-- = %d\n", a--);

 return 0;

}

Output:

a + b = 30

a - b = 20

a * b = 125

a / b = 5

a % b = 0

+a = 25

-a = -25

a++ = 25

a-- = 26

2.7.2 Relational operators: The relational operators in C are used for the comparison of the two operands.

All these operators are binary operators that return true or false values as the result of comparison.

These are a total of 6 relational operators in C:

S. No. Symbol Operator Description Syntax

1

< Less than

Returns true if the

left operand is less

than the right

operand. Else

false

a < b

2
> Greater than

Returns true if the

left operand is

greater than the

a > b

35

S. No. Symbol Operator Description Syntax

right operand. Else

false

3

<=
Less than or

equal to

Returns true if the

left operand is less

than or equal to the

right operand. Else

false

a <= b

4

>=
Greater than or

equal to

Returns true if the

left operand is

greater than or

equal to right

operand. Else

false

a >= b

5

== Equal to

Returns true if

both the operands

are equal.

a == b

6

!= Not equal to

Returns true if

both the operands

are NOT equal.

a != b

Example:

// C program to illustrate the relational operators

#include <stdio.h>

int main()

{

 int a = 25, b = 5;

 // using operators and printing results

 printf("a < b : %d\n", a < b);

 printf("a > b : %d\n", a > b);

 printf("a <= b: %d\n", a <= b);

 printf("a >= b: %d\n", a >= b);

 printf("a == b: %d\n", a == b);

 printf("a != b : %d\n", a != b);

36

 return 0;

}

Output:

a < b : 0

a > b : 1

a <= b: 0

a >= b: 1

a == b: 0

a != b : 1

2.7.3 Logical operators: Logical operators are used to combine two or more conditions/constraints or to

complement the evaluation of the original condition in consideration. The result of the operation of a logical

operator is a Boolean value either true or false.

S. No. Symbol Operator Description Syntax

1

&& Logical AND

Returns true if

both the operands

are true.

a && b

2

|| Logical OR

Returns true if

both or any of the

operand is true.

a || b

3
! Logical NOT

Returns true if the

operand is false.
!a

Example:

// C program to illustrate the logical operators

#include <stdio.h>

int main()

{

 int a = 25, b = 5;

 // using operators and printing results

 printf("a && b : %d\n", a && b);

 printf("a || b : %d\n", a || b);

 printf("!a: %d\n", !a);

 return 0;

}

37

Output:

a && b : 1

a || b : 1

!a: 0

2.7.4 Bitwise operators: The Bitwise operators are used to perform bit-level operations on the operands.

The operators are first converted to bit-level and then the calculation is performed on the operands.

Mathematical operations such as addition, subtraction, multiplication, etc. can be performed at the bit level

for faster processing.

There are 6 bitwise operators in C:

S. No. Symbol Operator Description Syntax

1

& Bitwise AND

Performs bit-by-

bit AND operation

and returns the

result.

a & b

2

| Bitwise OR

Performs bit-by-

bit OR operation

and returns the

result.

a | b

3

^ Bitwise XOR

Performs bit-by-

bit XOR operation

and returns the

result.

a ^ b

4

~
Bitwise First

Complement

Flips all the set

and unset bits on

the number.

~a

5

<< Bitwise Leftshift

Shifts the number

in binary form by

one place in the

operation and

returns the result.

a << b

38

S. No. Symbol Operator Description Syntax

6

>>
Bitwise

Rightshilft

Shifts the number

in binary form by

one place in the

operation and

returns the result.

a >> b

Example:

// C program to illustrate the bitwise operators

#include <stdio.h>

int main()

{

 int a = 25, b = 5;

 // using operators and printing results

 printf("a & b: %d\n", a & b);

 printf("a | b: %d\n", a | b);

 printf("a ^ b: %d\n", a ^ b);

 printf("~a: %d\n", ~a);

 printf("a >> b: %d\n", a >> b);

 printf("a << b: %d\n", a << b);

 return 0;

}

Output:

a & b: 1

a | b: 29

a ^ b: 28

~a: -26

a >> b: 0

a << b: 800

2.7.5 Assignment operators: Assignment operators are used to assign value to a variable. The left side

operand of the assignment operator is a variable and the right-side operand of the assignment operator is a

value. The value on the right side must be of the same data type as the variable on the left side otherwise

the compiler will raise an error.

The assignment operators can be combined with some other operators in C to provide multiple operations

using a single operator. These operators are called compound operators.

In C, there are 11 assignment operators:

39

S. No. Symbol Operator Description Syntax

1

=
Simple

Assignment

Assign the value

of the right

operand to the left

operand.

a = b

2

+= Plus and assign

Add the right

operand and left

operand and

assign this value to

the left operand.

a += b

3

-= Minus and assign

Subtract the right

operand and left

operand and

assign this value to

the left operand.

a -= b

4

*=
Multiply and

assign

Multiply the right

operand and left

operand and

assign this value to

the left operand.

a *= b

5

/= Divide and assign

Divide the left

operand with the

right operand and

assign this value to

the left operand.

a /= b

6

%=
Modulus and

assign

Assign the

remainder in the

division of left

operand with the

right operand to

the left operand.

a %= b

40

S. No. Symbol Operator Description Syntax

7

&= AND and assign

Performs bitwise

AND and assigns

this value to the

left operand.

a &= b

8

|= OR and assign

Performs bitwise

OR and assigns

this value to the

left operand.

a |= b

9

^= XOR and assign

Performs bitwise

XOR and assigns

this value to the

left operand.

a ^= b

10

>>=
Rightshift and

assign

Performs bitwise

Rightshift and

assign this value to

the left operand.

a >>= b

11

<<=
Leftshift and

assign

Performs bitwise

Leftshift and

assign this value to

the left operand.

a <<= b

Example:

// C program to illustrate the assignment operators

#include <stdio.h>

int main()

{

 int a = 25, b = 5;

 // using operators and printing results

 printf("a = b: %d\n", a = b);

 printf("a += b: %d\n", a += b);

 printf("a -= b: %d\n", a -= b);

 printf("a *= b: %d\n", a *= b);

 printf("a /= b: %d\n", a /= b);

41

 printf("a %%= b: %d\n", a %= b);

 printf("a &= b: %d\n", a &= b);

 printf("a |= b: %d\n", a |= b);

 printf("a >>= b: %d\n", a >>= b);

 printf("a <<= b: %d\n", a <<= b);

 return 0;

}

Output:

a = b: 5

a += b: 10

a -= b: 5

a *= b: 25

a /= b: 5

a %= b: 0

a &= b: 0

a |= b: 5

a >>= b: 0

a <<= b: 0

2.7.6 Other operators: Apart from the above operators, there are some other operators available in C used

to perform some specific tasks.

sizeof operator: sizeof is much used in the C programming language. It is a compile-time unary

operator which can be used to compute the size of its operand. The result of sizeof is of the unsigned

integral type which is usually denoted by size_t. Basically, the sizeof the operator is used to compute

the size of the variable or datatype.

Syntax

sizeof (operand)

Comma operator (,): The comma operator (represented by the token) is a binary operator that evaluates

its first operand and discards the result, it then evaluates the second operand and returns this value (and

type). The comma operator has the lowest precedence of any C operator. Comma acts as both operator and

separator.

Syntax

operand1 , operand2

Conditional operator (? :): The conditional operator is the only ternary operator in C++. Here,

Expression1 is the condition to be evaluated.

Syntax

Expression1 ? Expression 2 : Expression 3;

42

If the condition (Expression1) is True then we will execute and return the result of Expression2

otherwise if the condition (Expression1) is false then we will execute and return the result of

Expression3. We may replace the use of if..else statements with conditional operators.

dot (.) and arrow (->) operators: Member operators are used to reference individual members of classes,

structures, and unions. The dot operator is applied to the actual object. The arrow operator is used with a

pointer to an object.

Syntax

structure_variable . member;

and

structure_pointer -> member;

Cast operator: Casting operators convert one data type to another. For example, int(2.2000) would

return 2. A cast is a special operator that forces one data type to be converted into another. The most general

cast supported by most of the C compilers is as follows:

[(type) expression]

Syntax

(new_type) operand;

addressof (&) and dereference (*) operators: Pointer operator & returns the address of a variable. For

example &a; will give the actual address of the variable.

The pointer operator * is a pointer to a variable. For example *var; will pointer to a variable var.

Example of other C operators

// C Program to demonstrate the use of Misc operators

#include <stdio.h>

int main()

{

 // integer variable

 int num = 10;

 int* add_of_num = #

 printf("sizeof(num) = %d bytes\n", sizeof(num));

 printf("&num = %p\n", &num);

 printf("*add_of_num = %d\n", *add_of_num);

 printf("(10 < 5) ? 10 : 20 = %d\n", (10 < 5) ? 10 : 20);

 printf("(float)num = %f\n", (float)num);

 return 0;

}

Output

43

sizeof(num) = 4 bytes

&num = 0x7ffe2b7bdf8c

*add_of_num = 10

(10 < 5) ? 10 : 20 = 20

(float)num = 10.000000

Unary, binary and ternary operators in C

Operators can also be classified into three types on the basis of the number of operands they work on:

1. Unary Operators: Operators that work on single operand.

2. Binary Operators: Operators that work on two operands.

3. Ternary Operators: Operators that work on three operands.

Operator Precedence and Associativity in C

In C, it is very common for an expression or statement to have multiple operators and in this expression,

there should be a fixed order or priority of operator evaluation to avoid ambiguity.

Operator Precedence and Associativity is the concept that decides which operator will be evaluated first

in the case when there are multiple operators present in an expression.

The below table describes the precedence order and associativity of operators in C. The precedence of the

operator decreases from top to bottom.

Precedence Operator Description Associativity

1

() Parentheses (function call) left-to-right

[] Brackets (array subscript) left-to-right

. Member selection via object name left-to-right

-> Member selection via a pointer left-to-right

a++ , a–
Postfix increment/decrement (a is

a variable)
left-to-right

2
++a , –a

Prefix increment/decrement (a is a

variable)
right-to-left

44

Precedence Operator Description Associativity

+ , – Unary plus/minus right-to-left

! , ~
Logical negation/bitwise

complement
right-to-left

(type)
Cast (convert value to temporary

value of type)
right-to-left

* Dereference right-to-left

& Address (of operand) right-to-left

sizeof
Determine size in bytes on this

implementation
right-to-left

3 * , / , % Multiplication/division/modulus left-to-right

4 + , – Addition/subtraction left-to-right

5
<< , >>

Bitwise shift left, Bitwise shift

right
left-to-right

6

< , <=
Relational less than/less than or

equal to
left-to-right

> , >=
Relational greater than/greater

than or equal to
left-to-right

7
== , !=

Relational is equal to/is not equal

to
left-to-right

45

Precedence Operator Description Associativity

8 & Bitwise AND left-to-right

9 ^ Bitwise XOR left-to-right

10 | Bitwise OR left-to-right

11 && Logical AND left-to-right

12 || Logical OR left-to-right

13 ?: Ternary conditional right-to-left

14

= Assignment right-to-left

+= , -= Addition/subtraction assignment right-to-left

*= , /=
Multiplication/division

assignment
right-to-left

%= , &=
Modulus/bitwise AND

assignment
right-to-left

^= , |=
Bitwise exclusive/inclusive OR

assignment
right-to-left

<<=, >>= Bitwise shift left/right assignment right-to-left

15 , expression separator left-to-right

46

2.8 Expressions

An expression is a combination of operators, constants and variables. An expression may consist of one or

more operands, and zero or more operators to produce a value.

Fig 2.5: A C expression

Expressions may be of the following types:

Fig 2.6: Types of expressions in C

• Constant expressions: Constant expressions consist of only constant values. A constant value is

one that doesn’t change.

Examples:

5, 10 + 5 / 6.0, 'x’

• Integral expressions: Integral expressions are those which produce integer results after

implementing all the automatic and explicit type conversions.

Examples:

x, x * y, x + int(5.0)

where x and y are integer variables.

• Floating expressions: Float expressions are which produce floating point results after

implementing all the automatic and explicit type conversions.

Examples:

x + y, 10.75

https://media.geeksforgeeks.org/wp-content/uploads/20190801163131/What-is-an-Expression_-3.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20190801154515/Types-of-Expressions.jpg

47

where x and y are floating point variables.

• Relational expressions: Relational expressions yield results of type bool which takes a value true

or false. When arithmetic expressions are used on either side of a relational operator, they will be

evaluated first and then the results compared. Relational expressions are also known as Boolean

expressions.

Examples:

x <= y, x + y > 2

• Logical expressions: Logical expressions combine two or more relational expressions and produce

bool type results.

Examples:

x > y && x == 10, x == 10 || y == 5

• Pointer expressions: Pointer expressions produce address values.

Examples:

&x, ptr, ptr++

where x is a variable and ptr is a pointer.

• Bitwise expressions: Bitwise expressions are used to manipulate data at bit level. They are

basically used for testing or shifting bits.

Examples:
x << 3

shifts three bit position to left
y >> 1

shifts one bit position to right.

Shift operators are often used for multiplication and division by powers of two.

An expression may also use combinations of the above expressions. Such expressions are known

as compound expressions.

2.9 Type Conversion

Type conversion in C is the process of converting one data type to another. The type conversion is only

performed to those data types where conversion is possible. Type conversion is performed by a compiler.

In type conversion, the destination data type can’t be smaller than the source data type. Type conversion is

done at compile time, and it is also called widening conversion because the destination data type can’t be

smaller than the source data type. There are two types of Conversion:

2.9.1 Implicit type conversion

48

Fig 2.7: Implicit type conversion in C

Implicit type conversion is also called automatic type conversion. Implicit type conversion:

A. is done by the compiler on its own, without any external trigger from the user.

B. generally takes place when in an expression more than one data type is present. In such conditions

type conversion (type promotion) takes place to avoid loss of data.

C. upgrades all the data types of the variables to the data type of the variable with the largest data type.

bool -> char -> short int -> int ->

unsigned int -> long -> unsigned ->

long long -> float -> double -> long double

D. has the possibility for to lose information, signs can be lost (when signed is implicitly converted to

unsigned), and overflow can occur (when long is implicitly converted to float).

Some of its few occurrences are mentioned below:

• Conversion Rank

• Conversions in Assignment Expressions

• Conversion in other Binary Expressions

• Promotion

• Demotion

Example of Type Implicit Conversion

#include <stdio.h>

int main()

{

 int x = 10; // integer x

 char y = 'a'; // character c

 // y implicitly converted to int. ASCII

 // value of 'a' is 97

 x = x + y;

 // x is implicitly converted to float

 float z = x + 1.0;

 printf("x = %d, z = %f", x, z);

 return 0;

49

}

Output

x = 107, z = 108.000000

2.9.2 Explicit type conversion

This process is also called type casting, and it is user-defined. Here the user can typecast the result to make

it of a particular data type. Following is the syntax in C programming:

(type) expression

Type indicates the data type to which the final result is converted.

Example

#include<stdio.h>

int main()

{

 double x = 1.2;

 // Explicit conversion from double to int

 int sum = (int)x + 1;

 printf("sum = %d", sum);

 return 0;

}

Output

sum = 2

Advantages of type conversion

• Type safety: Type conversions can be used to ensure that data is being stored and processed in the

correct data type, avoiding potential type mismatches and type errors.

• Improved code readability: By explicitly converting data between different types, you can make the

intent of your code clearer and easier to understand.

• Improved performance: In some cases, type conversions can be used to optimize the performance of

your code by converting data to a more efficient data type for processing.

• Improved compatibility: Type conversions can be used to convert data between different types that

are not compatible, allowing you to write code that is compatible with a wider range of APIs and

libraries.

• Improved data manipulation: Type conversions can be used to manipulate data in various ways, such

as converting an integer to a string, converting a string to an integer, or converting a floating-point

number to an integer.

50

• Improved data storage: Type conversions can be used to store data in a more compact form, such as

converting a large integer value to a smaller integer type or converting a large floating-point value to a

smaller floating-point type.

 Disadvantages of type conversion:

• Loss of precision: Converting data from a larger data type to a smaller data type can result in loss of

precision, as some of the data may be truncated.

• Overflow or underflow: Converting data from a smaller data type to a larger data type can result in

overflow or underflow if the value being converted is too large or too small for the new data type.

• Unexpected behavior: Type conversions can lead to unexpected behavior, such as when converting

between signed and unsigned integer types, or when converting between floating-point and integer

types.

• Confusing syntax: Type conversions can have confusing syntax, particularly when using typecast

operators or type conversion functions, making the code more difficult to read and understand.

• Increased complexity: Type conversions can increase the complexity of your code, making it harder

to debug and maintain.

• Slower performance: Type conversions can sometimes result in slower performance, particularly

when converting data between complex data types, such as between structures and arrays.

2.10 Statements (Input/Output and Assigment)

C statements consist of tokens, expressions, and other statements. A statement that forms a component of

another statement is called the "body" of the enclosing statement.

2.10.1 Input/output statements

C language has standard libraries that allow input and output in a program. The stdio.h or standard input

output library in C that has methods for input and output.

The scanf() method, in C, reads the value from the console as per the type specified and stores it in the

given address.

Syntax:

scanf("%X", &variableOfXType);

where %X is the format specifier in C. It is a way to tell the compiler what type of data is in a variable

and & is the address operator in C, which tells the compiler to change the real value

of variableOfXType, stored at this address in the memory.

The printf() method, in C, prints the value passed as the parameter to it, on the console screen.

Syntax:

printf("%X", variableOfXType);

where %X is the format specifier in C. It is a way to tell the compiler what type of data is in a variable

and variableOfXType is the variable to be printed.

51

How to take input and output of basic types in C?

The basic type in C includes types like int, float, char, etc. In order to input or output the specific type,

the X in the above syntax is changed with the specific format specifier of that type. The syntax for input

and output for these are:

Integer:

Input: scanf("%d", &intVariable);

Output: printf("%d", intVariable);

Float:

Input: scanf("%f", &floatVariable);

Output: printf("%f", floatVariable);

Character:

Input: scanf("%c", &charVariable);

Output: printf("%c", charVariable);

Example:

#include <stdio.h>

int main()

{

 // Declare the variables

 int num;

 char ch;

 float f;

 // --- Integer ---

 // Input the integer

 printf("Enter the integer: ");

 scanf("%d", &num);

 // Output the integer

 printf("\nEntered integer is: %d", num);

 // --- Float ---

 //For input Clearing buffer

 while((getchar()) != '\n');

 // Input the float

 printf("\n\nEnter the float: ");

 scanf("%f", &f);

52

 // Output the float

 printf("\nEntered float is: %f", f);

 // --- Character ---

 // Input the Character

 printf("\n\nEnter the Character: ");

 scanf("%c", &ch);

 // Output the Character

 printf("\nEntered character is: %c", ch);

 return 0;

}

Output

Enter the integer: 10

Entered integer is: 10

Enter the float: 2.5

Entered float is: 2.500000

Enter the Character: A

Entered Character is: A

2.10.2 Assignment statements

Assignment statement allows a variable to hold different types of values during its program lifespan.

Another way of understanding an assignment statement is, it stores a value in the memory location which

is denoted by a variable name.

Syntax

The symbol used in an assignment statement is called an operator. The symbol is ‘=’.

Note: The assignment operator should never be used for equality purpose which is double equal sign ‘==’.

The basic syntax of assignment statement in a programming language is:

variable = expression;

where,

variable = variable name

expression = it could be either a direct value or a math expression/formula or a function call.

C requires data type to be specified for the variable, so that it is easy to allocate memory space and store

those values during program execution.

Syntax:

53

data_type variable_name = value;

Examples:

int a = 50;

float b;

a = 25;

b = 34.25f;

In the above-given examples, variable ‘a’ is assigned a value in the same statement as per its defined data

type. A data type is only declared for variable ‘b’. In the 3rd line of code, variable ‘a’ is reassigned the

value 25. The 4th line of code assigns the value for variable ‘b’.

2.11 Use of Header and Library Files

2.11.1 Header Files

In C language, header files contain a set of predefined standard library functions. The .h is the extension

of the header files in C and we request to use a header file in our program by including it with the C

preprocessing directive “#include”.

C header files offer the features like library functions, data types, macros, etc., by importing them into the

program with the help of a preprocessor directive “#include”.

Syntax of Header Files in C

We can include header files in C by using one of the given two syntax whether it is a pre-defined or user-

defined header file.

#include <filename.h> // for files in system/default directory

 or
#include "filename.h" // for files in same directory as source file

The “#include” preprocessor directs the compiler that the header file needs to be processed before

compilation and includes all the necessary data types and function definitions.

Fig 2.8: Using header files in a C program

54

Example of Header File in C

The below example demonstrates the use of header files using standard input and output stdio.h header

file.

#include <stdio.h>

int main()

{

 printf(

 "Printf() is the function in stdio.h header file");

 return 0;

}

Output

Printf() is the function in stdio.h header file

Types of C Header Files

There are two types of header files in C:

1. Standard / Pre-existing header files

2. Non-standard / User-defined header files

1. Standard Header Files in C and Their Uses

Standard header files contain the libraries defined in the ISO standard of the C programming language.

They are stored in the default directory of the compiler and are present in all the C compilers from any

vendor.

There are 31 standard header files in the latest version of C language. Following is the list of some

commonly used header files in C:

Header File Description

<assert.h> It contains information for adding diagnostics that aid program debugging.

<errno.h> It is used to perform error handling operations like errno(), strerror(), perror(), etc.

<float.h>

It contains a set of various platform-dependent constants related to floating point values.

These constants are proposed by ANSI C.

They make programs more portable. Some examples of constants included in this

header file are- e(exponent), b(base/radix), etc.

55

Header File Description

<math.h> It is used to perform mathematical operations like sqrt(), log2(), pow(), etc.

<signal.h> It is used to perform signal handling functions like signal() and raise().

<stdarg.h>

It is used to perform standard argument functions like va_start() and va_arg(). It is also

used to indicate start of the

variable-length argument list and to fetch the arguments from the variable-length

argument list in the program respectively.

<ctype.h>

It contains function prototypes for functions that test characters for certain properties,

and also function prototypes for

functions that can be used to convert uppercase letters to lowercase letters and vice

versa.

<stdio.h>
It is used to perform input and output operations using functions like scanf(), printf(),

etc.

<setjump.h>

It contains standard utility functions like malloc(), realloc(), etc. It contains function

prototypes for functions that allow bypassing

of the usual function call and return sequence.

<string.h>
It is used to perform various functionalities related to string manipulation

like strlen(), strcmp(), strcpy(), size(), etc.

<limits.h>

It determines the various properties of the various variable types. The macros defined

in this header limits the values of

various variable types like char, int, and long. These limits specify that a variable cannot

store any value

beyond these limits, for example, an unsigned character can store up to a maximum

value of 255.

56

Header File Description

<time.h>

It is used to perform functions related to date() and time() like setdate() and getdate().

It is also used to modify the system date

and get the CPU time respectively.

<stddef.h> It contains common type definitions used by C for performing calculations.

<locale.h>

It contains function prototypes and other information that enables a program to be

modified for the current locale on which it’s running.

It enables the computer system to handle different conventions for expressing data such

as times, dates, or large numbers throughout the world.

Example

The below example demonstrates the use of some commonly used header files in C.

// C program to illustrate

// the use of header file

// in C

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Driver Code

int main()

{

 char s1[20] = "12345";

 char s2[10] = "Geeks";

 char s3[10] = "ForGeeks";

 long int res;

 // Find the value of 9^3 using a

 // function in math.h library

 res = pow(9, 3);

 printf("Using math.h, "

 "The value is: %ld\n",

 res);

 // Convert a string to long long int

57

 // using a function in stdlib.h library

 long int a = atol(s1);

 printf("Using stdlib.h, the string");

 printf(" to long int: %ld\n", a);

 // Copy the string s3 into s2 using

 // using a function in string.h library

 strcpy(s2, s3);

 printf("Using string.h, the strings"

 " s2 and s3: %s %s\n",

 s2, s3);

 return 0;

}

Output

Using math.h, The value is: 729

Using stdlib.h, the string to long int: 12345

Using string.h, the strings s2 and s3: ForGeeks ForGeeks

2. Non-Standard Header Files in C and Their Uses

Non-standard header files are not part of the language’s ISO standard. They are generally all the header

files defined by the programmers for purposes like containing custom library functions etc. They are

manually installed by the user or may be part of the compiler by some specific vendor.

There are lots of non-standard libraries for C language. Some commonly used non-standard/user-defined

header files are listed below:

Header File Description

<conio.h> It contains some useful console functions.

<gtk/gtk.h> It contains GNU’s GUI library for C.

Example

The below example demonstrates the use of conio.h non-standard header file.

#include <stdio.h>

#include <stdio.h>

#include <conio.h>

// Function to display a welcome message

void displayMessage() {

58

 printf("Hello! SLIET\n");

}

int main() {

 // Using conio.h functions

 printf("Press any key to print message \n");

 getch(); // Wait for a key press

 // Call the additional function after a key press

 displayMessage();

 return 0;

}

Output

Press any key to print message

Hello! SLIET

Create your own Header File in C

Instead of writing a large and complex code, we can create our own header files and include them in our

program to use whenever we want. It enhances code functionality and readability. Below are the steps to

create our own header file:

Step 1: Write your own C code and save that file with the “.h” extension. Below is the illustration of the

header file:

// Function to find the sum of two

// numbers passed

int sumOfTwoNumbers(int a, int b)

{

 return (a + b);

}

Step 2: Include your header file with “#include” in your C program as shown below:

// C++ program to find the sum of two

// numbers using function declared in

// header file

#include "iostream"

// Including header file

#include "sum.h"

using namespace std;

// Driver Code

int main()

{

59

 // Given two numbers

 int a = 13, b = 22;

 // Function declared in header

 // file to find the sum

 printf("Sum is: %d", sumoftwonumbers(a, b));

}

Output

Sum is: 35

Including Multiple Header Files

You can use various header files in a program. When a header file is included twice within a program, the

compiler processes the contents of that header file twice. This leads to an error in the program. To eliminate

this error, conditional preprocessor directives are used.

Syntax

#ifndef HEADER_FILE_NAME

#define HEADER_FILE_NAME

the entire header file

#endif

This construct is called wrapper “#ifndef”. When the header is included again, the conditional will

become false, because HEADER_FILE_NAME is defined. The preprocessor will skip over the entire file

contents, and the compiler will not see it twice.

Sometimes it’s essential to include several diverse header files based on the requirements of the program.

For this, multiple conditionals are used.

Syntax

#if SYSTEM_ONE

 #include "system1.h"

#elif SYSTEM_TWO

 #include "system2.h"

#elif SYSTEM_THREE

#endif

2.11.2 Library Files

The Standard Function Library in C is a huge library of sub-libraries, each of which contains the code for

several functions. In order to make use of these libraries, link each library in the broader library through the

use of header files. The actual definitions of these functions are stored in separate library files, and

declarations in header files. In order to use these functions, we have to include the header file in the

program.

Examples:

60

To perform any operation related to mathematics, it is necessary to include math.h header file.

Example 1: sqrt()

Syntax:

double sqrt(double x)

Below is the C program to calculate the square root of any number:

// C program to implement

// the above approach

#include <math.h>

#include <stdio.h>

// Driver code

int main()

{

 double number, squareRoot;

 number = 12.5;

 // Computing the square root

 squareRoot = sqrt(number);

 printf("Square root of %.2lf = %.2lf",

 number, squareRoot);

 return 0;

}

Output

Square root of 12.50 = 3.54

Example 2: pow()

Syntax:

double pow(double x, double y)

Below is the C program to calculate the power of any number:

// C program to implement

// the above approach

#include <math.h>

#include <stdio.h>

// Driver code

int main()

{

 double base, power, result;

 base = 10.0;

 power = 2.0;

https://www.geeksforgeeks.org/power-function-cc/

61

 // Calculate the result

 result = pow(base, power);

 printf("%.1lf^%.1lf = %.2lf",

 base, power, result);

 return 0;

}

Output

10.0^2.0 = 100.00

The limits.h header determines various properties of the various variable types. The macros defined in

this header limits the values of various variable types like char, int, and long. Below is the C

program to implement the above approach.

// C program to implement

// the above approach

#include <limits.h>

#include <stdio.h>

// Driver code

int main()

{

 printf("Number of bits in a byte %d\n",

 CHAR_BIT);

 printf("Minimum value of SIGNED CHAR = %d\n",

 SCHAR_MIN);

 printf("Maximum value of SIGNED CHAR = %d\n",

 SCHAR_MAX);

 printf("Maximum value of UNSIGNED CHAR = %d\n",

 UCHAR_MAX);

 printf("Minimum value of SHORT INT = %d\n",

 SHRT_MIN);

 printf("Maximum value of SHORT INT = %d\n",

 SHRT_MAX);

 printf("Minimum value of INT = %d\n",

 INT_MIN);

 printf("Maximum value of INT = %d\n",

 INT_MAX);

 printf("Minimum value of CHAR = %d\n",

 CHAR_MIN);

 printf("Maximum value of CHAR = %d\n",

 CHAR_MAX);

 printf("Minimum value of LONG = %ld\n",

 LONG_MIN);

 printf("Maximum value of LONG = %ld\n",

 LONG_MAX);

62

 return (0);

}

Output

Number of bits in a byte 8

Minimum value of SIGNED CHAR = -128

Maximum value of SIGNED CHAR = 127

Maximum value of UNSIGNED CHAR = 255

Minimum value of SHORT INT = -32768

Maximum value of SHORT INT = 32767

Minimum value of INT = -2147483648

Maximum value of INT = 2147483647

Minimum value of CHAR = -128

Maximum value of CHAR = 127

Minimum value of LONG = -9223372036854775808

Maximum value of LONG = 9223372036854775807

time.h header file defines the date and time functions. Below is the C program to implement time()

and localtime() functions:

// C program to implement

// the above approach

#include <stdio.h>

#include <time.h>

#define SIZE 256

// Driver code

int main(void)

{

 char buffer[SIZE];

 time_t curtime;

 struct tm* loctime;

 // Get the current time.

 curtime = time(NULL);

 // Convert it to local time

 // representation.

 loctime = localtime(&curtime);

 // Print out the date and time

 // in the standard format.

 fputs(asctime(loctime), stdout);

 // Print it out

 strftime(buffer, SIZE,

 "Today is %A, %B %d.\n",

https://www.geeksforgeeks.org/time-h-header-file-in-c-with-examples/

63

 loctime);

 fputs(buffer, stdout);

 strftime(buffer, SIZE,

 "The time is %I:%M %p.\n",

 loctime);

 fputs(buffer, stdout);

 return 0;

}

Output

Sun May 30 17:27:47 2021

Today is Sunday, May 30.

The time is 05:27 PM.

Difference between Header files and Library files

Header Files: The files that tell the compiler how to call some functionality (without knowing how the

functionality actually works) are called header files. They contain function prototypes. They also contain

data types and constants used with the libraries. We use #include to use these header files in programs.

These files end with .h extension.

Library: Library is the place where the actual functionality is implemented i.e. they contain function body.

Libraries have mainly two categories:

• Static

• Shared or Dynamic

Static: Static libraries contain object code linked with an end user application and then they become part

of the executable. These libraries are specifically used at compile time which means the library should be

present in the correct location when user wants to compile his/her C or C++ program. On Windows, they

end with .lib extension and with .a for MacOS.

Shared or Dynamic: These libraries are only required at run-time i.e., the user can compile his/her code

without using these libraries. In short, these libraries are linked against at compile time to resolve undefined

references and then are distributed to the application so that the application can load it at run time. For

example, when we open our game folders, we can find many .dll (dynamic link libraries) files. As these

libraries can be shared by multiple programs, they are also called shared libraries. These files end

with .dll or .lib extensions. In windows they end with .dll extension.

Example: Math.h is a header file which includes the prototype for function calls like sqrt(), pow()

etc., whereas libm.lib, libmmd.lib, libmmd.dll are some of the math libraries. In simple terms

a header file is like a visiting card and libraries are like a real person, so we use visiting card (header file)

to reach to the actual person (library).

Let’s see the difference between these two in tabular form, so that it can be easily comparable:

64

Header Files Library Files

They have the extension .h They have the extension .lib

They contain function declaration and even macros. They contain function definitions

They are available inside “include sub directory” which

itself is in Turbo compiler.

They are available inside “lib sub directory”

which itself is in Turbo compiler.

Header files are human-readable. Since they are in the

form of source code.

Library files are non-human readable. Since

they are in the form of machine code.

Header files in our program are included by using a

command #include which is internally handle by pre-

processor.

Library files in our program are included in

last stage by special software called as

linker.

65

Chapter 3

Control Structures

3.1 Introduction

A control structure is a block of code that manages the flow of execution in a program. Control structures

dictate the order in which statements are executed based on certain conditions.

Types of control structures:

• Sequential Structure

• Selection Structure (Conditional Statements)

• Repetition Structure (Loops)

Let’s see each of them in brief:

Sequential Structure: The default structure is where statements are executed one after the other in

sequence.

Selection Structure (Conditional Statements): Allows the program to make decisions and execute

different blocks of code based on specified conditions. All conditional statements available in C language

are mentioned below:

• if statement

• if else

• else if ladder

• Nested if else

• Ternary operator

• switch case

Repetition Structure (Loops): Allows the execution of a block of code repeatedly as long as a specified

condition is true.

Types of loops in C language are mentioned below:

• Entry Controlled Loop: while loop, and for loop

• Exit Controlled Loop: do while loop

3.2 Decision making with if, if…else and nested ifs

3.2.1 if statement

The if in C is the simplest decision-making statement. It consists of the test condition and if block or

body. If the given condition is true only then the if block will be executed.

Syntax of if Statement in C

if(condition)

{

66

 // if body

 // Statements to execute if condition is true

}

How to use if statement in C?

The following examples demonstrate how to use the if statement in C:

// C Program to demonstrate the syntax of if statement

#include <stdio.h>

int main()

{

 int gfg = 9;

 // if statement with true condition

 if (gfg < 10) {

 printf("%d is less than 10", gfg);

 }

 // if statement with false condition

 if (gfg > 20) {

 printf("%d is greater than 20", gfg);

 }

 return 0;

}

Output

9 is less than 10

How if in C works?

Fig 3.1: Working of if Statement in C

The working of the if statement in C is as follows:

STEP 1: When the program control comes to the if statement, the test expression is evaluated.

67

STEP 2A: If the condition is true, the statements inside the if block are executed.

STEP 2B: If the expression is false, the statements inside the if body are not executed.

STEP 3: Program control moves out of the if block and the code after the if block is executed.

Flowchart of if in C

Fig 3.2: Flow Diagram of if Statement in C

Examples of if Statements in C

Example 1: C Program to check whether the number is even or odd.

In this program, we will make use of the logic that if the number is divisible by 2, then it is even else odd

except one.

// C Program to check if the number is even or odd

#include <stdio.h>

int main()

{

 int n = 4956;

 // condition to check for even number

 if (n % 2 == 0) {

 printf("%d is Even", n);

 }

 // condition to check for odd number

 else {

 printf("%d is Odd", n);

 }

 return 0;

}

68

Output

4956 is Even

3.2.2 if…else statement

The if-else statement in C is a flow control statement used for decision-making in the C program. It is

one of the core concepts of C programming. It is an extension of the if in C that includes an else block

along with the already existing if block. It is used to decide whether the part of the code will be executed

or not based on the specified condition (test expression). If the given condition is true, then the code inside

the if block is executed, otherwise the code inside the else block is executed.

Syntax of if-else

if (condition) {

 // code executed when the condition is true

}

else {

 // code executed when the condition is false

}

The following program demonstrates how to use if-else in C:

// C Program to demonstrate the use of if-else statement

#include <stdio.h>

int main()

{

 // if block with condition at the start

 if (5 < 10) {

 // will be executed if the condition is true

 printf("5 is less than 10.");

 }

 // else block after the if block

 else {

 // will be executed if the condition is false

 printf("5 is greater that 10.");

 }

 return 0;

}

Output

5 is less than 10.

Note: Any non-zero and non-null values are assumed to be true, and zero or null values are assumed to be

false.

69

How if-else Statement works?

Working of the if-else statement in C is explained below:

1. When the program control first comes to the if-else block, the test condition is checked.

2. If the test condition is true:

The if block is executed.

3. If the test condition is false:

The else block is executed

4. After that, the program control continues to the statements below the if-else statement.

Flowchart of the if-else statement

Fig 3.3: Flowchart of if-else in C

Examples of if-else Statement in C

The following are two basic examples of the if-else statement that shows the use of the if-else statement

in a C program.

Example 1: C Program to check whether a given number is even or odd

For a given number to be even, it should be perfectly divisible by 2. We will use the if-else statement

to check for this condition and execute different statements for when it is true and when it is false.

// C Program to Demonstrate the working of if-else statement

#include <stdio.h>

int main()

{

 // Some random number

 int num = 9911234;

 // checking the condition at the start of if block

 if (num % 2 == 0) {

 // executed when the number is even

70

 printf("Number is even");

 }

 // else block

 else {

 // executed when the number is odd

 printf("Number is Odd");

 }

 return 0;

}

Output

Number is even

Example 2: C Program to check whether a person is eligible to vote or not.

We know that a person is eligible to vote after he/she is at least 18 years old. Now we use this condition in

the if-else statement to check the eligibility of the person.

// C Program to check whether the person is eligible to vote

// or not

#include <stdio.h>

int main()

{

 // declaring age of two person

 int p1_age = 15;

 int p2_age = 25;

 // checking eligibility of person 1

 if (p1_age < 18)

 printf("Person 1 is not eligible to vote.\n");

 else

 printf("Person 1 is eligible to vote.\n");

 // checking eligiblity of person 2

 if (p2_age < 18)

 printf("Person 2 is not eligible to vote.\n");

 else

 printf("Person 2 is eligible to vote.");

 return 0;

}

Output

Person 1 is not eligible to vote.

Person 2 is eligible to vote.

You may notice that in the second example, we did not enclose the body of the if and else statement in

the braces and still the code is running without error. This is because the C language allows the skipping of

the braces around the body of the if-else statement when there is only one statement in the body.

71

3.2.3 Nested ifs

A nested if in C is an if statement that is the target of another if statement. Nested if statements mean

an if statement inside another if statement.

Syntax of Nested if-else

if (condition1)

{

 // Executes when condition1 is true

 if (condition_2)

 {

 // statement 1

 }

 else

 {

 // Statement 2

 }

}

else {

 if (condition_3)

 {

 // statement 3

 }

 else

 {

 // Statement 4

 }

}

Example of Nested if-else

// C program to illustrate nested-if statement

#include <stdio.h>

int main()

{

 int i = 10;

 if (i == 10) {

 // First if statement

 if (i < 15)

 printf("i is smaller than 15\n");

 // Nested - if statement

 // Will only be executed if statement above

 // is true

 if (i < 12)

 printf("i is smaller than 12 too\n");

 else

 printf("i is greater than 15");

72

 }

 else {

 if (i == 20) {

 // Nested - if statement

 // Will only be executed if statement above

 // is true

 if (i < 22)

 printf("i is smaller than 22 too\n");

 else

 printf("i is greater than 25");

 }

 }

 return 0;

}

Output
i is smaller than 15

i is smaller than 12 too

3.2.4 if-else-if ladder

The if-else-if statements are used when the user has to decide among multiple options. The C if

statements are executed from the top down. As soon as one of the conditions controlling the if is true,

the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If

none of the conditions is true, then the final else statement will be executed. if-else-if ladder is

similar to the switch statement.

Syntax of if-else-if Ladder

if (condition)

 statement;

else if (condition)

 statement;

.

.

else

 statement;

Flowchart of if-else-if Ladder

https://www.geeksforgeeks.org/c-if-else-if-ladder/

73

Fig 3.4: Flow Diagram of if-else-if

Example of if-else-if Ladder

// C program to illustrate nested-if statement

#include <stdio.h>

int main()

{

 int i = 20;

 if (i == 10)

 printf("i is 10");

 else if (i == 15)

 printf("i is 15");

 else if (i == 20)

 printf("i is 20");

 else

 printf("i is not present");

}

Output

i is 20

3.3 The while loop

The while loop is an entry-controlled loop in C programming language. This loop can be used to iterate

a part of code while the given condition remains true.

Syntax

The while loop syntax is as follows:

while (test expression)

{

74

 // body consisting of multiple statements

}

Example

#include <stdio.h>

int main()

{

 // Initialization of loop variable

 int i = 0;

 // setting test expression as (i < 5), means the loop

 // will execute till i is less than 5

 while (i < 5) {

 // loop statements

 printf("SLIET\n");

 // updating the loop variable

 i++;

 }

 return 0;

}

Output

SLIET

SLIET

SLIET

SLIET

SLIET

while Loop Structure

The while loop works by following a very structured top-down approach that can be divided into the

following parts:

1. Initialization: In this step, we initialize the loop variable to some initial value. Initialization is

not part of while loop syntax, but it is essential when we are using some variable in the test

expression.

2. Conditional Statement: This is one of the most crucial steps as it decides whether the block in the

while loop code will be executed. The while loop body will be executed if and only the test

condition defined in the conditional statement is true.

3. Body: It is the actual set of statements that will be executed till the specified condition is true. It is

generally enclosed inside { } braces.

4. Updation: It is an expression that updates the value of the loop variable in each iteration. It is

also not part of the syntax, but we have to define it explicitly in the body of the loop.

75

Flowchart of while loop in C

 Fig 3.5: Flow Diagram of while loop

Working of while Loop

We can understand the working of the while loop by looking at the above flowchart:

1. STEP 1: When the program first comes to the loop, the test condition will be evaluated.

2. STEP 2A: If the test condition is false, the body of the loop will be skipped program will continue.

3. STEP 2B: If the expression evaluates to true, the body of the loop will be executed.

4. STEP 3: After executing the body, the program control will go to STEP 1. This process will

continue till the test expression is true.

3.4 The do…while loop

The do…while in C is a loop statement used to repeat some part of the code till the given condition is

fulfilled. It is a form of an exit-controlled or post-tested loop where the test condition is checked after

executing the body of the loop. Due to this, the statements in the do…while loop will always be executed

at least once no matter what the condition is.

Syntax of do…while Loop in C

do {

 // body of do-while loop

} while (condition);

How to Use do…while Loop in C

The following example demonstrates the use of do…while loop in C programming language.

76

#include <stdio.h>

int main()

{

 // loop variable declaration and initialization

 int i = 0;

 // do while loop

 do {

 printf("SLIET\n");

 i++;

 } while (i < 3);

 return 0;

}

Output

SLIET

SLIET

SLIET

How does the do…while Loop works?

1. When the program control first comes to the do…while loop, the body of the loop is executed

first and then the test condition/expression is checked, unlike other loops where the test

condition is checked first. Due to this property, the do…while loop is also called exit controlled

or post-tested loop.

2. When the test condition is evaluated as true, the program control goes to the start of the loop

and the body is executed once more.

3. The above process repeats till the test condition is true.

4. When the test condition is evaluated as false, the program controls move on to the next

statements after the do…while loop.

As with the while loop in C, initialization and updation is not a part of the do…while loop syntax. We

have to do that explicitly before and, in the loop, respectively.

The flowchart below shows the visual representation of the flow of the do…while loop in C.

77

Fig. 3.6: Flowchart of do…while Loop in C

Difference between while and do…while Loop in C

while Loop do…while Loop

The test condition is checked before the

loop body is executed.
The test condition is checked after executing the body.

When the condition is false, the body is

not executed even once.

The body of the do…while loop is executed at least

once even when the condition is false.

It is a type of pre-tested or entry-

controlled loop.
It is a type of post-tested or exit-controlled loop.

Semicolon is not required. Semicolon is required at the end.

3.5 The for loop

78

The for loop in C Language provides a functionality/feature to repeat a set of statements a defined number

of times. The for loop is in itself a form of an entry-controlled loop.

Unlike the while loop and do…while loop, the for loop contains the initialization, condition, and

updating statements as part of its syntax. It is mainly used to traverse arrays, vectors, and other data

structures.

Syntax of for Loop

for(initialization; check/test expression; updation)

{

 // body consisting of multiple statements

}

Structure of for Loop

The for loop follows a very structured approach where it begins with initializing a condition then checks

the condition and, in the end, executes conditional statements followed by an updating of values.

1. Initialization: This step initializes a loop control variable with an initial value that helps to progress

the loop or helps in checking the condition. It acts as the index value when iterating an array or

string.

2. Check/Test Condition: This step of the for loop defines the condition that determines whether

the loop should continue executing or not. The condition is checked before each iteration and if it

is true then the iteration of the loop continues otherwise the loop is terminated.

3. Body: It is the set of statements i.e. variables, functions, etc. that is executed repeatedly till the

condition is true. It is enclosed within curly braces { }.

4. Updation: This specifies how the loop control variable should be updated after each iteration of

the loop. Generally, it is the incrementation (variable++) or decrementation (variable–) of the loop

control variable.

5. How for Loop Works?

The working of for loop is mentioned below:

6. Step 1: Initialization is the basic step of for loop this step occurs only once during the start of the

loop. During Initialization, variables are declared, or already existing variables are assigned some

value.

• Step 2: During the second step, the condition statements are checked and only if the condition is

the satisfied loop we can further process otherwise loop is broken.

• Step 3: All the statements inside the loop are executed.

• Step 4: Updating the values of variables has been done as defined in the loop.

Continue to Step 2 till the loop breaks.

Flowchart of for Loop

79

Fig. 3.7: C for Loop Flow Diagram

Example of for loop

#include <stdio.h>

int main()

{

 int i = 0;

 // i <= 5 is the check/test expression

 // The loop will function if and only if i is less

 // than 5

 //i++' will increments it's value by this so that the

 // loop can iterate for further evaluation

 // conditional statement

 for (i = 1; i <= 5; i++)

 {

 // statement will be printed

 printf("SLIET\n");

 }

 // Return statement to tell that everything executed

 // safely

 return 0;

}

80

Output

SLIET

SLIET

SLIET

SLIET

SLIET

3.6 The break statement

The break in C is a loop control statement that breaks out of the loop when encountered. It can be used

inside loops or switch statements to bring the control out of the block. The break statement can only break

out of a single loop at a time.

Syntax of break in C

break;

We just put the break wherever we want to terminate the execution of the loop.

Use of break in C

The break statement in C is used for breaking out of the loop. We can use it with any type of loop to bring

the program control out of the loop. In C, we can use the break statement in the following ways:

• Simple Loops

• Nested Loops

• Infinite Loops

• Switch case

Example of break in C

// C Program to demonstrate break statement with for loop

#include <stdio.h>

int main()

{

 // using break inside for loop to terminate after 2

 // iteration

 printf("break in for loop\n");

 for (int i = 1; i < 5; i++) {

 if (i == 3) {

 break;

 }

 else {

 printf("%d ", i);

 }

 }

81

 // using break inside while loop to terminate after 2

 // iteration

 printf("\nbreak in while loop\n");

 int i = 1;

 while (i < 20) {

 if (i == 3)

 break;

 else

 printf("%d ", i);

 i++;

 }

 return 0;

}

Output

break in for loop

1 2

break in while loop

1 2

3.7 The continue statement

The C continue statement resets program control to the beginning of the loop when encountered. As a

result, the current iteration of the loop gets skipped and the control moves on to the next iteration.

Statements after the continue statement in the loop are not executed.

Syntax of continue in C

continue;

Use of continue in C

The continue statement in C can be used in any kind of loop to skip the current iteration. In C, we can

use it in the following types of loops:

• Single Loops

• Nested Loops

Example of continue in C

// C program to explain the use

// of continue statement with for loop

#include <stdio.h>

int main()

{

 // for loop to print 1 to 8

 for (int i = 1; i <= 8; i++) {

 // when i = 4, the iteration will be skipped and for

82

 // will not be printed

 if (i == 4) {

 continue;

 }

 printf("%d ", i);

 }

 printf("\n");

 int i = 0;

 // while loop to print 1 to 8

 while (i < 8) {

 // when i = 4, the iteration will be skipped and for

 // will not be printed

 i++;

 if (i == 4) {

 continue;

 }

 printf("%d ", i);

 }

 return 0;

}

Output

1 2 3 5 6 7 8

1 2 3 5 6 7 8

3.8 The switch statement

switch case statement evaluates a given expression and based on the evaluated value (matching a

certain condition), it executes the statements associated with it. Basically, it is used to perform different

actions based on different conditions (cases).

• switch case statements follow a selection-control mechanism and allow a value to change

control of execution.

• They are a substitute for long if statements that compare a variable to several integral values.

• The switch statement is a multiway branch statement. It provides an easy way to dispatch

execution to different parts of code based on the value of the expression.

In C, the switch case statement is used for executing one condition from multiple conditions. It is similar

to an if-else-if ladder. The switch statement consists of conditional-based cases and a default case.

Syntax of switch Statement in C

switch(expression)

{

case value1: statement_1;

 break;

83

case value2: statement_2;

 break;

.

.

.

case value_n: statement_n;

 break;

default: default_statement;

}

How to use switch case Statement in C?

The following are some of the rules that we need to follow while using the switch statement:

• In a switch statement, the “case value” must be of “char” and “int” type.

• There can be one or N number of cases.

• The values in the case must be unique.

• Each statement of the case can have a break statement. It is optional.

• The default Statement is also optional.

Example

// C program to Demonstrate returning of day based numeric value

#include <stdio.h>

int main()

{

 // switch variable

 int var = 1;

 // switch statement

 switch (var)

 {

 case 1:

 printf("Case 1 is Matched.");

 break;

 case 2:

 printf("Case 2 is Matched.");

 break;

 case 3:

 printf("Case 3 is Matched.");

 break;

 default:

 printf("Default case is Matched.");

 break;

 }

84

 return 0;

}

Output

Case 1 is Matched.

How switch Statement Works?

The working of the switch statement in C is as follows:

1. Step 1: The switch variable is evaluated.

2. Step 2: The evaluated value is matched against all the present cases.

3. Step 3A: If the matching case value is found, the associated code is executed.

4. Step 3B: If the matching code is not found, then the default case is executed, if present.

5. Step 4A: If the break keyword is present in the case, then program control breaks out of the

switch statement.

6. Step 4B: If the break keyword is not present, then all the cases after the matching case are

executed.

7. Step 5: Statements after the switch statement are executed.

Flowchart of switch Statement

Fig. 3.8: Flowchart of switch statement in C

Important Points About switch case Statements

1. switch expression should result in a constant value

85

If the expression provided in the switch statement does not result in a constant value, it would not be

valid. Some valid expressions for switch case will be,

// Constant expressions allowed

switch(1+2+23)

switch(1*2+3%4)

// Variable expression are allowed provided

// they are assigned with fixed values

switch(a*b+c*d)

switch(a+b+c)

2. Expression value should be only of int or char type.

The switch statement can only evaluate the integer or character value. So, the switch expression should

return the values of type int or char only.

3. Case Values must be Unique

In the C switch statement, duplicate case values are not allowed.

3. Nesting of switch Statements

Nesting of switch statements is allowed, which means you can have switch statements inside

another switch. However nested switch statements should be avoided as it makes the program more

complex and less readable.

4. The default block can be placed anywhere

Regardless of its placement, the default case only gets executed if none of the other case conditions

are met. So, putting it at the beginning, middle, or end doesn’t change the core logic.

86

Chapter 4

Functions

4.1 Introduction to functions

A function in C is a set of statements that when called perform some specific tasks. It is the basic building

block of a C program that provides modularity and code reusability. The programming statements of a

function are enclosed within { } braces, having certain meanings and performing certain operations. They

are also called subroutines or procedures in other languages.

Syntax of Functions in C

The syntax of function can be divided into 3 aspects:

1. Function Declaration

2. Function Definition

3. Function Calls

Function Declarations

In a function declaration, we must provide the function name, its return type, and the number and type of

its parameters. A function declaration tells the compiler that there is a function with the given name defined

somewhere else in the program.

Syntax

return_type name_of_the_function (parameter_1, parameter_2);

The parameter name is not mandatory while declaring functions. We can also declare the function without

using the name of the data variables.

Example

int sum(int a, int b); // Function declaration with parameter names

int sum(int , int); // Function declaration without parameter names

Fig. 4.1: Function Declaration

Note: A function in C must always be declared globally before calling it.

Function Definition

The function definition consists of actual statements which are executed when the function is called (i.e.

when the program control comes to the function).

87

A C function is generally defined and declared in a single step because the function definition always starts

with the function declaration, so we do not need to declare it explicitly. The below example serves as both

a function definition and a declaration.

return_type function_name (para1_type para1_name, para2_type

para2_name)

{

 // body of the function

}

Fig. 4.2: Function Definition in C

Function Call

A function call is a statement that instructs the compiler to execute the function. We use the function name

and parameters in the function call.

In the below example, the first sum function is called and 10, 30 are passed to the sum function. After the

function call sum of a and b is returned and control is also returned back to the main function of the

program.

Fig. 4.3: Working of function in C

Note: Function call is neccessary to bring the program control to the function definition. If not called, the

function statements will not be executed.

88

Example of C Function

// C program to show function

// call and definition

#include <stdio.h>

// Function that takes two parameters

// a and b as inputs and returns

// their sum

int sum(int a, int b)

{

 return a + b;

}

// Driver code

int main()

{

 // Calling sum function and

 // storing its value in add variable

 int add = sum(10, 30);

 printf("Sum is: %d", add);

 return 0;

}

Output

Sum is: 40

As we noticed, we have not used explicit function declaration. We simply defined and called the function.

Function Return Type

Function return type tells what type of value is returned after all function is executed. When we don’t want

to return a value, we can use the void data type.

Example:

int func(parameter_1, parameter_2);

The above function will return an integer value after running statements inside the function.

Note: Only one value can be returned from a C function. To return multiple values, we have to use pointers

or structures.

Function Arguments

Function Arguments (also known as Function Parameters) are the data that is passed to a function.

Example:

int function_name(int var1, int var2);

89

Conditions of Return Types and Arguments

In C programming language, functions can be called either with or without arguments and might return

values. They may or might not return values to the calling functions.

1. Function with no arguments and no return value

2. Function with no arguments and with return value

3. Function with argument and with no return value

4. Function with arguments and with return value

How Does C Function Work?

Working of the C function can be broken into the following steps as mentioned below:

1. Declaring a function: Declaring a function is a step where we declare a function. Here we specify

the return types and parameters of the function.

2. Defining a function: This is where the function’s body is provided. Here, we specify what the

function does, including the operations to be performed when the function is called.

3. Calling the function: Calling the function is a step where we call the function by passing the

arguments in the function.

4. Executing the function: Executing the function is a step where we can run all the statements inside

the function to get the final result.

5. Returning a value: Returning a value is the step where the calculated value after the execution of

the function is returned. Exiting the function is the final step where all the allocated memory to the

variables, functions, etc., is destroyed before giving full control back to the caller.

4.2 Types of Functions

There are two types of functions in C:

1. Library Functions

2. User Defined Functions

1. Library Function

A library function is also referred to as a “built-in function”. A compiler package already exists that

contains these functions, each of which has a specific meaning and is included in the package. Built-in

functions have the advantage of being directly usable without being defined, whereas user-defined functions

must be declared and defined before being used.

For Example:

pow(), sqrt(), strcmp(), strcpy() etc.

Example:

#include <math.h>

90

#include <stdio.h>

// Driver code

int main()

{

 double Number;

 Number = 49;

 // Computing the square root with

 // the help of predefined C

 // library function

 double squareRoot = sqrt(Number);

 printf("The Square root of %.2lf = %.2lf",

 Number, squareRoot);

 return 0;

}

Output

The Square root of 49.00 = 7.00

2. User Defined Function

Functions that the programmer creates are known as User-Defined functions or “tailor-made functions”.

User-defined functions can be improved and modified according to the needs of the programmer. Whenever

we write a function that is case-specific and is not defined in any header file, we need to declare and define

our own functions according to the syntax.

Advantages of User-Defined Functions

• Changeable functions can be modified as per need.

• The Code of these functions is reusable in other programs.

• These functions are easy to understand, debug and maintain.

Example:

// C program to show

// user-defined functions

#include <stdio.h>

int sum(int a, int b)

{

 return a + b;

}

// Driver code

int main()

{

91

 int a = 30, b = 40;

 // function call

 int res = sum(a, b);

 printf("Sum is: %d", res);

 return 0;

}

Output

Sum is: 70

4.3 Passing Parameters to Functions

The data passed when the function is being invoked is known as the actual parameters. In the below

program, 10 and 30 are known as actual parameters. Formal Parameters are the variables and the data type

as mentioned in the function declaration. In the below program, a and b are known as formal parameters.

Fig. 4.4: Passing Parameters to Functions

We can pass arguments to the C function in two ways:

1. Pass by Value

2. Pass by Reference

1. Pass by Value

Parameter passing in this method copies values from actual parameters into formal function parameters. As

a result, any changes made inside the functions do not reflect in the caller’s parameters.

92

Example:

// C program to show use

// of call by value

#include <stdio.h>

void swap(int var1, int var2)

{

 int temp = var1;

 var1 = var2;

 var2 = temp;

}

// Driver code

int main()

{

 int var1 = 3, var2 = 2;

 printf("Before swap Value of var1 and var2 is: %d, %d\n",

 var1, var2);

 swap(var1, var2);

 printf("After swap Value of var1 and var2 is: %d, %d",

 var1, var2);

 return 0;

}

Output

Before swap Value of var1 and var2 is: 3, 2

After swap Value of var1 and var2 is: 3, 2

2. Pass by Reference

The caller’s actual parameters and the function’s actual parameters refer to the same locations, so any

changes made inside the function are reflected in the caller’s actual parameters.

Example:

// C program to show use of

// call by Reference

#include <stdio.h>

void swap(int *var1, int *var2)

{

 int temp = *var1;

 *var1 = *var2;

 *var2 = temp;

}

// Driver code

int main()

93

{

 int var1 = 3, var2 = 2;

 printf("Before swap Value of var1 and var2 is: %d, %d\n",

 var1, var2);

 swap(&var1, &var2);

 printf("After swap Value of var1 and var2 is: %d, %d",

 var1, var2);

 return 0;

}

Output

Before swap Value of var1 and var2 is: 3, 2

After swap Value of var1 and var2 is: 2, 3

4.4 Global and Local Variables

Local Variable:

Local variables are variables that are declared within a specific scope, such as within a function or a block

of code. These variables are only accessible within that particular scope and are typically used for temporary

storage of data or for performing calculations within a limited context. Once the scope in which a local

variable is defined ends, the variable typically goes out of scope and its memory is released.

In many programming languages, local variables have a limited visibility and lifespan compared to global

variables, which are accessible from any part of the program. This encapsulation of variables within specific

scopes helps to organize code, prevent unintended modifications, and manage memory efficiently.

Example of Local Variable:

#include <stdio.h>

void exampleFunction() {

 // Local variable declaration

 int x = 10;

 int y = 20;

 int z = x + y;

 printf("The sum is: %d\n”, z");

}

int main() {

 exampleFunction();

 return 0;

}

Output

The sum is: 30

Advantages of local variable:

94

1. Encapsulation: Local variables help encapsulate data within specific functions or blocks, reducing

the risk of unintended modification.

2. Memory Management: They promote efficient memory usage by automatically releasing memory

once the scope exits.

3. Code Clarity: Local variables make code easier to read and understand by limiting the scope of

variables to where they are needed.

4. Name Reusability: Local variables allow the reuse of variable names without causing conflicts

with variables in other scopes.

Disadvantages of local variable:

1. Limited Accessibility: Local variables cannot be accessed outside of the scope in which they are

defined, which may restrict their use in certain scenarios.

2. Potential for Shadowing Bugs: Shadowing, where a local variable hides another variable with the

same name in an outer scope, can lead to bugs and confusion if not handled properly.

3. Lifetime Limited to Scope: Local variables cease to exist once the scope in which they are defined

exits, which may be a disadvantage if persistent data storage is required.

Global Variable:

Global variables are variables that are declared outside of any function or block of code and can be accessed

from any part of the program. Unlike local variables, which have limited scope, global variables have a

broader scope and can be used across multiple functions, modules, or files within a program. Here are some

characteristics, features, advantages, disadvantages, and uses of global variables:

Example of Global Variable:

#include <stdio.h>

// Global variable declaration

int global_var = 100;

void exampleFunction() {

 // Local variable declaration

 int x = 10;

 int y = 20;

 int z = x + y + global_var;

 printf("The sum is: %d\n”, z");

}

int main() {

 exampleFunction();

 return 0;

}

Output

The sum is: 130

95

Advantages of global variables:

1. Accessibility: Global variables provide a convenient way to share data across different parts of the

program without passing them as function arguments.

2. Ease of Use: They simplify the sharing of data between functions and modules, reducing the need

for complex parameter passing mechanisms.

3. Persistence: Global variables retain their values throughout the entire execution of the program,

making them suitable for storing persistent data.

4. Reduced Code Duplication: Global variables can help reduce code duplication by centralizing

data that is used in multiple parts of the program.

Disadvantages of global variables:

1. Encapsulation Issues: Global variables can lead to encapsulation issues by allowing any part of

the program to modify their values, potentially leading to unintended side effects.

2. Debugging Complexity: Since global variables can be accessed and modified from anywhere in

the program, tracking down bugs related to their usage can be challenging.

3. Potential for Race Conditions: In multithreaded or concurrent programs, global variables can

introduce race conditions if accessed and modified concurrently by multiple threads or processes.

4. Maintainability: Excessive use of global variables can make code harder to understand and

maintain, as their effects may not be localized to specific functions or modules.

4.5 Recursion

Recursion is the process of a function calling itself repeatedly till the given condition is satisfied. A function

that calls itself directly or indirectly is called a recursive function and such kind of function calls are called

recursive calls.

In C, recursion is used to solve complex problems by breaking them down into simpler sub-problems. We

can solve large numbers of problems using recursion in C. For example, factorial of a number, generating

Fibonacci series, generating subsets, etc.

Recursive Functions in C

In C, a function that calls itself is called Recursive Function. The recursive functions contain a call to

themselves somewhere in the function body. Moreover, such functions can contain multiple recursive calls.

Basic Structure of Recursive Functions

The basic syntax structure of the recursive functions is:

type function_name (args) {

 // function statements

 // base condition

 // recursion case (recursive call)

}

96

Example: C Program to Implement Recursion

In the below program, recursion is used to calculate the sum of the first N natural numbers.

// C Program to calculate the sum of first N natural numbers

// using recursion

#include <stdio.h>

int nSum(int n)

{

 // base condition to terminate the recursion when N = 0

 if (n == 0) {

 return 0;

 }

 // recursive case / recursive call

 int res = n + nSum(n - 1);

 return res;

}

int main()

{

 int n = 5;

 // calling the function

 int sum = nSum(n);

 printf("Sum of First %d Natural Numbers: %d", n, sum);

 return 0;

}

Output

Sum of First 5 Natural Numbers: 15

We will understand the different concepts of recursion using this example.

Fundamentals of C Recursion

The fundamental of recursion consists of two objects which are essential for any recursive function. These

are:

1. Recursion Case

2. Base Condition

97

Fig. 4.5: Base Condition and Recursion Case for nSum() Function

1. Recursion Case

The recursion case refers to the recursive call present in the recursive function. It decides what type of

recursion will occur and how the problem will be divided into smaller subproblems.

The recursion case defined in the nSum() function of the above example is:

int res = n + nSum(n - 1);

2. Base Condition

The base condition specifies when the recursion is going to terminate. It is the condition that determines

the exit point of the recursion.

Note: It is important to define the base condition before the recursive case otherwise, the base condition

may never encounter and recursion might continue till infinity.

Considering the above example again, the base condition defined for the nSum() function:

if (n == 0) {

 return 0;

}

How Recursion works in C?

To understand how C recursion works, we will again refer to the example above and trace the flow of the

program. In the nSum() function, Recursive Case is

int res = n + nSum(n - 1);

In the example, n = 5, so as nSum(5)’s recursive case, we get

int res = 5 + nSum(4);

98

In nSum(4), the recursion case and everything else will be the same, but n = 4. Let’s evaluate the

recursive case for n = 4,

int res = 4 + nSum(3);

Similarly, for nSum(3), nSum(2) and nSum(1)

int res = 3 + nSum(2); // nSum(3)

int res = 2 + nSum(1); // nSum(2)

int res = 1 + nSum(0); // nSum(1)

Let’s not evaluate nSum(0) and further for now.

Now recall that the return value of the nSum() function in this same integer named res. So, instead of

the function, we can put the value returned by these functions. As such, for nSum(5), we get

int res = 5 + 4 + nSum(3);

Similarly, putting return values of nSum() for every n, we get

int res = 5 + 4 + 3 + 2 + 1 + nSum(0);

In nSum() function, the base condition is

if (n == 0) {

 return 0;

}

which means that when nSum(0) will return 0. Putting this value in nSum(5)’s recursive case, we get

int res = 5 + 4 + 3 + 2 + 1 + 0 = 15

At this point, we can see that there is no function call left. So, the recursion will stop here, and the final

value returned by the function will be 15 which is the sum of the first 5 natural numbers.

99

Fig. 4.6: Recursion Tree Diagram of nSum(5) Function

Memory Allocation for C Recursive Function

To further improve our understanding of recursion in C, we will look into how the recursion is internally

handled by the C compiler and how the memory is managed for recursive functions.

As you may know, all the function’s local variables and other stuff are stored inside the stack frame in stack

memory and once the function returns some value, its stack frame is removed from the memory. The

recursion follows a similar concept but with a little twist. In Recursion,

• A stack frame is created on top of the existing stack frames each time a recursive call is encountered

and the data of each recursive copy of the function will be stored in their respective stack.

• Once, some value is returned by the function, its stack frame will be destroyed.

• The compiler maintains an instruction pointer to store the address of the point where the control

should return in the function after its progressive copy returns some value. This return point is the

statement just after the recursive call.

• After all the recursive copy returned some value, we come back to the base function and the finally

return the control to the caller function.

Let’s use the first example again and see how the memory is managed for the nSum() function.

Step 1:

When nSum() is called from the main() function with 5 as an argument, a stack frame for nSum(5) is

created.

Step 2:

While executing nSum(5), a recursive call is encountered as nSum(4). The compiler will now create a

new stack frame on top of the nSum(5)’s stack frame and maintain an instruction pointer at the statement

where nSum(4) was encountered.

100

Fig. 4.7: Function Call Stack at the Execution of nSum(5)

Step 3:

In the execution of nSum(4), we encounter another recursive call as nSum(3). The compiler will again

follow the same steps and maintain another instruction pointer and stack frame for nSum(3).

Fig. 4.8: Function Call Stack at the Execution of nSum(4)

Step 4:

The same thing will happen with nSum(3), nSum(2), and nSum(1)’s execution.

Fig. 4.9: Function Call Stack at the Execution of nSum(3)

Step 5:

But when the control comes to nSum(0), the condition (n == 0) becomes true and the

statement return 0 is executed.

Fig. 4.10: Function Call Stack at the Execution of nSum(0)

Step 6:

101

As the value is returned by the nSum(0), the stack frame for the nSum(0) will be destroyed. Using the

instruction pointer, the program control will return to the nSum(1) function and the nSum(0) call will

be replaced by value 0.

Fig. 4.11: nSum(0) Function Returning Value

Step 7:

Now, in nSum(1), the expression int res = 1 + 0 will be evaluated and the statement return

res will be executed. The program control will move to the nSum(2).

Fig. 4.12: nSum(1) Function Returning Value

Step 8:

In nSum(2), nSum(1) call will be replaced by the value it returned, which is 1. So, after evaluating int

res = 2 + 1, 3 will be returned to nSum(3). The same thing will keep happening till the control comes

to the nSum(5) again.

Fig. 4.13: nSum(2), nSum(3) and nSum(4) Functions Returning Value

Step 9:

When the control reaches the nSum(5), the expression int res = 5 + nSum(4) will look

like int res = 5 + 10. Finally, this value will be returned to the main() function and the execution

of nSum() function will be completed.

102

Fig. 4.14: Final Result Returned to main()

Stack Overflow

The program’s call stack has limited memory assigned to it by the operating system and is generally enough

for program execution. But if we have a recursive function that goes on for infinite times, sooner or later,

the memory will be exhausted, and no more data can be stored. This is called stack overflow. In other

words, stack overflow is an error that occurs when the call stack of the program cannot store more data

resulting in program termination.

103

Chapter 5

Arrays

5.1 Introduction to Arrays

An array in C is a fixed-size collection of similar data items stored in contiguous memory locations. It can

be used to store the collection of primitive data types such as int, char, float, etc., and also derived and user-

defined data types such as pointers, structures, etc.

Fig. 5.1: An array in C

5.2 C Array Declaration

In C, we have to declare the array like any other variable before using it. We can declare an array by

specifying its name, the type of its elements, and the size of its dimensions. When we declare an array in

C, the compiler allocates the memory block of the specified size to the array name.

Syntax of Array Declaration

data_type array_name [size];

 or
data_type array_name [size1] [size2]...[sizeN];

where N is the number of dimensions.

Fig. 5.2: Declaring an array in C

The C arrays are static in nature, i.e., they are allocated memory at the compile time.

Example of Array Declaration

// C Program to illustrate the array declaration

#include <stdio.h>

int main()

104

{

 // declaring array of integers

 int arr_int[5];

 // declaring array of characters

 char arr_char[5];

 return 0;

}

5.3 C Array Initialization

Initialization in C is the process to assign some initial value to the variable. When the array is declared or

allocated memory, the elements of the array contain some garbage value. So, we need to initialize the array

to some meaningful value. There are multiple ways in which we can initialize an array in C.

1. Array Initialization with Declaration

In this method, we initialize the array along with its declaration. We use an initializer list to initialize

multiple elements of the array. An initializer list is the list of values enclosed within braces { } separated

by a comma.

data_type array_name [size] = {value1, value2, ... valueN};

Fig. 5.3: Array initialization with declaration

2. Array Initialization with Declaration without Size

If we initialize an array using an initializer list, we can skip declaring the size of the array as the compiler

can automatically deduce the size of the array in these cases. The size of the array in these cases is equal to

the number of elements present in the initializer list as the compiler can automatically deduce the size of

the array.

data_type array_name[] = {1,2,3,4,5};

The size of the above arrays is 5 which is automatically deduced by the compiler.

3. Array Initialization after Declaration (Using Loops)

We initialize the array after the declaration by assigning the initial value to each element individually. We

can use for loop, while loop, or do-while loop to assign the value to each element of the array.

105

for (int i = 0; i < N; i++) {

 array_name[i] = valuei;

}

Example of Array Initialization in C

// C Program to demonstrate array initialization

#include <stdio.h>

int main()

{

 // array initialization using initialier list

 int arr[5] = { 10, 20, 30, 40, 50 };

 // array initialization using initializer list without

 // specifying size

 int arr1[] = { 1, 2, 3, 4, 5 };

 // array initialization using for loop

 float arr2[5];

 for (int i = 0; i < 5; i++) {

 arr2[i] = (float)i * 2.1;

 }

 return 0;

}

5.4 Accessing Array Elements

We can access any element of an array in C using the array subscript operator [] and the index value i of

the element.

array_name [index];

One thing to note is that the indexing in the array always starts with 0, i.e., the first element is at index 0 and

the last element is at N – 1 where N is the number of elements in the array.

Fig. 5.4: Accessing array elements

106

Example of Accessing Array Elements using Array Subscript Operator

// C Program to illustrate element access using array

// subscript

#include <stdio.h>

int main()

{

 // array declaration and initialization

 int arr[5] = { 15, 25, 35, 45, 55 };

 // accessing element at index 2 i.e 3rd element

 printf("Element at arr[2]: %d\n", arr[2]);

 // accessing element at index 4 i.e last element

 printf("Element at arr[4]: %d\n", arr[4]);

 // accessing element at index 0 i.e first element

 printf("Element at arr[0]: %d", arr[0]);

 return 0;

}

Output

Element at arr[2]: 35

Element at arr[4]: 55

Element at arr[0]: 15

5.5 Updating Array Elements

We can update the value of an element at the given index i in a similar way to accessing an element by

using the array subscript operator [] and assignment operator =.

array_name[i] = new_value;

5.6 C Array Traversal

Traversal is the process in which we visit every element of a data structure. For C array traversal, we use

loops to iterate through each element of the array.

Array Traversal using for Loop

for (int i = 0; i < N; i++) {

 array_name[i];

}

5.7 How to use Arrays in C?

107

The following program demonstrates how to use an array in the C programming language:

// C Program to demonstrate the use of array

#include <stdio.h>

int main()

{

 // array declaration and initialization

 int arr[5] = { 10, 20, 30, 40, 50 };

 // modifying element at index 2

 arr[2] = 100;

 // traversing array using for loop

 printf("Elements in Array: ");

 for (int i = 0; i < 5; i++) {

 printf("%d ", arr[i]);

 }

 return 0;

}

Output

Elements in Array: 10 20 100 40 50

5.8 Types of Arrays in C

There are two types of arrays based on the number of dimensions it has. They are as follows:

1. One Dimensional Arrays (1D Array)

2. Multidimensional Arrays

1. One Dimensional Array in C

The One-dimensional arrays, also known as 1-D arrays in C, are those arrays that have only one dimension.

Syntax of 1D Array in C

array_name [size];

Example of 1D Array in C

// C Program to illustrate the use of 1D array

#include <stdio.h>

int main()

{

108

 // 1d array declaration

 int arr[5];

 // 1d array initialization using for loop

 for (int i = 0; i < 5; i++) {

 arr[i] = i * i - 2 * i + 1;

 }

 printf("Elements of Array: ");

 // printing 1d array by traversing using for loop

 for (int i = 0; i < 5; i++) {

 printf("%d ", arr[i]);

 }

 return 0;

}

Output

Elements of Array: 1 0 1 4 9

Array of Characters (Strings)

In C, we store the words, i.e., a sequence of characters in the form of an array of characters terminated by

a NULL character. These are called strings in C language.

// C Program to illustrate strings

#include <stdio.h>

int main()

{

 // creating array of character

 char arr[6] = { 'S', 'L', 'I', 'E', 'T', '\0' };

 // printing string

 int i = 0;

 while (arr[i]) {

 printf("%c", arr[i++]);

 }

 return 0;

}

Output

SLIET

2. Multidimensional Array in C

109

Multi-dimensional Arrays in C are those arrays that have more than one dimension. Some of the popular

multidimensional arrays are 2D arrays and 3D arrays. We can declare arrays with more dimensions than 3d

arrays, but they are avoided as they get very complex and occupy a large amount of space.

A. Two-Dimensional Array in C

A Two-Dimensional array or 2D array in C is an array that has exactly two dimensions. They can be

visualized in the form of rows and columns organized in a two-dimensional plane.

Syntax of 2D Array in C

array_name[size1] [size2];

Here,

• size1: Size of the first dimension.

• size2: Size of the second dimension.

Example of 2D Array in C

// C Program to illustrate 2d array

#include <stdio.h>

int main()

{

 // declaring and initializing 2d array

 int arr[2][3] = { 10, 20, 30, 40, 50, 60 };

 printf("2D Array:\n");

 // printing 2d array

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 3; j++) {

 printf("%d ",arr[i][j]);

 }

 printf("\n");

 }

 return 0;

}

Output

2D Array:

10 20 30

40 50 60

B. Three-Dimensional Array in C

110

Another popular form of a multi-dimensional array is Three Dimensional Array or 3D Array. A 3D array

has exactly three dimensions. It can be visualized as a collection of 2D arrays stacked on top of each other

to create the third dimension.

Syntax of 3D Array in C

array_name [size1] [size2] [size3];

Example of 3D Array

// C Program to illustrate the 3d array

#include <stdio.h>

int main()

{

 // 3D array declaration

 int arr[2][2][2] = { 10, 20, 30, 40, 50, 60 };

 // printing elements

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 for (int k = 0; k < 2; k++) {

 printf("%d ", arr[i][j][k]);

 }

 printf("\n");

 }

 printf("\n \n");

 }

 return 0;

}

Output

10 20

30 40

50 60

0 0

5.9 Relationship between Arrays and Pointers

Arrays and Pointers are closely related to each other such that we can use pointers to perform all the possible

operations of the array. The array name is a constant pointer to the first element of the array and the array

decays to the pointers when passed to the function.

// C Program to demonstrate the relation between arrays and

// pointers

111

#include <stdio.h>

int main()

{

 int arr[5] = { 10, 20, 30, 40, 50 };

 int* ptr = &arr[0];

 // comparing address of first element and address stored

 // inside array name

 printf("Address Stored in Array name: %p\nAddress of "

 "1st Array Element: %p\n",

 arr, &arr[0]);

 // printing array elements using pointers

 printf("Array elements using pointer: ");

 for (int i = 0; i < 5; i++) {

 printf("%d ", *ptr++);

 }

 return 0;

}

Output

Address Stored in Array name: 0x7ffcab67d8e0

Address of 1st Array Element: 0x7ffcab67d8e0

Array elements using pointer: 10 20 30 40 50

5.10 Passing an Array to a Function in C

An array is always passed as pointers to a function in C. Whenever we try to pass an array to a function, it

decays to the pointer and then passed as a pointer to the first element of an array.

We can verify this using the following C Program:

// C Program to pass an array to a function

#include <stdio.h>

void printArray(int arr[])

{

 printf("Size of Array in Functions: %d\n", sizeof(arr));

 printf("Array Elements: ");

 for (int i = 0; i < 5; i++) {

 printf("%d ",arr[i]);

 }

}

// driver code

int main()

112

{

 int arr[5] = { 10, 20, 30, 40, 50 };

 printf("Size of Array in main(): %d\n", sizeof(arr));

 printArray(arr);

 return 0;

}

Output

Size of Array in main(): 20

Size of Array in Functions: 8

Array Elements: 10 20 30 40 50

5.11 Returning an Array from a Function in C

In C, we can only return a single value from a function. To return multiple values or elements, we have to

use pointers. We can return an array from a function using a pointer to the first element of that array.

// C Program to return array from a function

#include <stdio.h>

// function

int* func()

{

 static int arr[5] = { 1, 2, 3, 4, 5 };

 return arr;

}

// driver code

int main()

{

 int* ptr = func();

 printf("Array Elements: ");

 for (int i = 0; i < 5; i++) {

 printf("%d ", *ptr++);

 }

 return 0;

}

Output

Array Elements: 1 2 3 4 5

113

Note: You may have noticed that we declared static array using static keyword. This is due to the fact that

when a function returns a value, all the local variables and other entities declared inside that function are

deleted. So, if we create a local array instead of static, we will get segmentation fault while trying to access

the array in the main function.

5.12 Properties of Arrays in C

It is very important to understand the properties of the C array so that we can avoid bugs while using it.

1. Fixed Size

The array in C is a fixed-size collection of elements. The size of the array must be known at the compile

time and it cannot be changed once it is declared.

2. Homogeneous Collection

We can only store one type of element in an array. There is no restriction on the number of elements but

the type of all of these elements must be the same.

3. Indexing in Array

The array index always starts with 0 in C language. It means that the index of the first element of the array

will be 0 and the last element will be N – 1.

4. Dimensions of an Array

A dimension of an array is the number of indexes required to refer to an element in the array. It is the

number of directions in which you can grow the array size.

5. Contiguous Storage

All the elements in the array are stored continuously one after another in the memory. It is one of the

defining properties of the array in C which is also the reason why random access is possible in the array.

6. Random Access

The array in C provides random access to its element i.e we can get to a random element at any index of

the array in constant time complexity just by using its index number.

7. No Index Out of Bounds Checking

There is no index out-of-bounds checking in C/C++, for example, the following program compiles fine but

may produce unexpected output when run.

// This C program compiles fine

// as index out of bound

// is not checked in C.

#include <stdio.h>

int main()

{

 int arr[2];

114

 printf("%d ", arr[3]);

 printf("%d ", arr[-2]);

 return 0;

}

Output

0 0

In C, it is not a compiler error to initialize an array with more elements than the specified size. For example,

the below program compiles fine and shows just a Warning.

#include <stdio.h>

int main()

{

 // Array declaration by initializing it

 // with more elements than specified size.

 int arr[2] = { 10, 20, 30, 40, 50 };

 return 0;

}

Output

Warnings:

prog.c: In function 'main':

prog.c:7:25: warning: excess elements in array initializer

 int arr[2] = { 10, 20, 30, 40, 50 };

 ^

prog.c:7:25: note: (near initialization for 'arr')

prog.c:7:29: warning: excess elements in array initializer

 int arr[2] = { 10, 20, 30, 40, 50 };

 ^

prog.c:7:29: note: (near initialization for 'arr')

prog.c:7:33: warning: excess elements in array initializer

 int arr[2] = { 10, 20, 30, 40, 50 };

 ^

prog.c:7:33: note: (near initialization for 'arr')

5.13 Examples of Arrays in C

Example 1: C Program to print the average of the given list of numbers

In this program, we will store the numbers in an array and traverse it to calculate the average of the number

stored.

115

// C Program to the average to two numbers

#include <stdio.h>

// function to calculate average of the function

float getAverage(float* arr, int size)

{

 int sum = 0;

 // calculating cumulative sum of all the array elements

 for (int i = 0; i < size; i++) {

 sum += arr[i];

 }

 // returning average

 return sum / size;

}

// driver code

int main()

{

 // declaring and initializing array

 float arr[5] = { 10, 20, 30, 40, 50 };

 // size of array using sizeof operator

 int n = sizeof(arr) / sizeof(float);

 // printing array elements

 printf("Array Elements: ");

 for (int i = 0; i < n; i++) {

 printf("%.0f ", arr[i]);

 }

 // calling getAverage function and printing average

 printf("\nAverage: %.2f", getAverage(arr, n));

 return 0;

}

Output

Array Elements: 10 20 30 40 50

Average: 30.00

Example 2: C Program to find the largest number in the array.

// C Program to find the largest number in the array.

#include <stdio.h>

// function to return max value

116

int getMax(int* arr, int size)

{

 int max = arr[0];

 for (int i = 1; i < size; i++) {

 if (max < arr[i]) {

 max = arr[i];

 }

 }

 return max;

}

// Driver code

int main()

{

 int arr[10]

 = { 135, 165, 1, 16, 511, 65, 654, 654, 169, 4 };

 printf("Largest Number in the Array: %d",

 getMax(arr, 10));

 return 0;

}

Output

Largest Number in the Array: 654

5.14 Advantages and Disadvantages of Arrays in C

The following are the main advantages of an array:

1. Random and fast access of elements using the array index.

2. Use of fewer lines of code as it creates a single array of multiple elements.

3. Traversal through the array becomes easy using a single loop.

4. Sorting becomes easy as it can be accomplished by writing fewer lines of code.

The following are the main disadvantages of an array:

1. Allows a fixed number of elements to be entered which is decided at the time of declaration. Unlike

a linked list, an array in C is not dynamic.

2. Insertion and deletion of elements can be costly since the elements need to be rearranged after

insertion and deletion.

117

Chapter 6

Structures and Unions

The structure in C is a user-defined data type that can be used to group items of possibly different types

into a single type. The struct keyword is used to define the structure in the C programming language.

The items in the structure are called its member and they can be of any valid data type. Additionally, the

values of a structure are stored in contiguous memory locations.

6.1 C Structure Declaration

We have to declare structure in C before using it in our program. In structure declaration, we specify its

member variables along with their datatype. We can use the struct keyword to declare the structure in C

using the following syntax:

Syntax

struct structure_name {

 data_type member_name1;

 data_type member_name1;

};

The above syntax is also called a structure template or structure prototype and no memory is allocated to

the structure in the declaration.

6.2 C Structure Definition

To use structure in our program, we have to define its instance. We can do that by creating variables of the

structure type. We can define structure variables using two methods:

1. Structure Variable Declaration with Structure Template

struct structure_name {

 data_type member_name1;

 data_type member_name1;

}variable1, varaible2, ...;

2. Structure Variable Declaration after Structure Template

// structure declared beforehand

struct structure_name variable1, variable2,;

6.3 Accessing Structure Members

We can access structure members by using the (.) dot operator.

118

Syntax

structure_name.member1;

strcuture_name.member2;

In the case where we have a pointer to the structure, we can also use the arrow operator to access the

members.

6.4 Initializing Structure Members

Structure members cannot be initialized with the declaration. For example, the following C program fails

in the compilation.

struct Point

{

 int x = 0; // COMPILER ERROR: cannot initialize members here

 int y = 0; // COMPILER ERROR: cannot initialize members here

};

The reason for the above error is simple. When a datatype is declared, no memory is allocated for it.

Memory is allocated only when variables are created.

Default Initialization

By default, structure members are not automatically initialized to 0 or NULL. Uninitialized structure

members will contain garbage values. However, when a structure variable is declared with an initializer,

all members not explicitly initialized are zero-initialized.

struct Point

{

 int x;

 int y;

};

struct Point p = {0}; // Both x and y are initialized to 0

We can initialize structure members in 3 ways which are as follows:

1. Using Assignment Operator.

2. Using Initializer List.

3. Using Designated Initializer List.

1. Initialization using Assignment Operator

struct structure_name str;

str.member1 = value1;

str.member2 = value2;

str.member3 = value3;

.

119

.

.

2. Initialization using Initializer List

struct structure_name str = { value1, value2, value3 };

In this type of initialization, the values are assigned in sequential order as they are declared in the structure

template.

3. Initialization using Designated Initializer List

Designated Initialization allows structure members to be initialized in any order. This feature has been

added in the C99 standard.

struct structure_name str = { .member1 = value1, .member2 = value2,

.member3 = value3 };

Example of Structure in C

The following C program shows how to use structures

// C program to illustrate the use of structures

#include <stdio.h>

// declaring structure with name str1

struct str1 {

 int i;

 char c;

 float f;

 char s[30];

};

// declaring structure with name str2

struct str2 {

 int ii;

 char cc;

 float ff;

} var; // variable declaration with structure template

// Driver code

int main()

{

 // variable declaration after structure template

 // initialization with initializer list and designated

 // initializer list

 struct str1 var1 = { 1, 'A', 1.00, "SLIET" }, var2;

 struct str2 var3 = { .ff = 5.00, .ii = 5, .cc = 'a' };

120

 // copying structure using assignment operator

 var2 = var1;

 printf("Struct 1:\n\ti = %d, c = %c, f = %f, s = %s\n",

 var1.i, var1.c, var1.f, var1.s);

 printf("Struct 2:\n\ti = %d, c = %c, f = %f, s = %s\n",

 var2.i, var2.c, var2.f, var2.s);

 printf("Struct 3\n\ti = %d, c = %c, f = %f\n", var3.ii,

 var3.cc, var3.ff);

 return 0;

}

Output

Struct 1:

 i = 1, c = A, f = 1.000000, s = SLIET

Struct 2:

 i = 1, c = A, f = 1.000000, s = SLIET

Struct 3

 i = 5, c = a, f = 5.000000

6.5 Nested Structures

C language allows us to insert one structure into another as a member. This process is called nesting and

such structures are called nested structures. There are two ways in which we can nest one structure into

another:

1. Embedded Structure Nesting

In this method, the structure being nested is also declared inside the parent structure.

Example

struct parent {

 int member1;

 struct member_str member2 {

 int member_str1;

 char member_str2;

 ...

 }

 ...

}

2. Separate Structure Nesting

In this method, two structures are declared separately and then the member structure is nested inside the

parent structure.

Example

121

struct member_str {

 int member_str1;

 char member_str2;

 ...

}

struct parent {

 int member1;

 struct member_str member2;

 ...

}

One thing to note here is that the declaration of the structure should always be present before its definition

as a structure member. For example, the declaration below is invalid as the struct mem is not defined

when it is declared inside the parent structure.

struct parent {

 struct mem a;

};

struct mem {

 int var;

};

Accessing Nested Members

We can access nested Members by using the same (.) dot operator two times as shown:

str_parent.str_child.member;

Example of Structure Nesting

// C Program to illustrate structure nesting along with

// forward declaration

#include <stdio.h>

// child structure declaration

struct child {

 int x;

 char c;

};

// parent structure declaration

struct parent {

 int a;

 struct child b;

};

122

// driver code

int main()

{

 struct parent var1 = { 25, 195, 'A' };

 // accessing and printing nested members

 printf("var1.a = %d\n", var1.a);

 printf("var1.b.x = %d\n", var1.b.x);

 printf("var1.b.c = %c", var1.b.c);

 return 0;

}

Output

var1.a = 25

var1.b.x = 195

var1.b.c = A

6.6 Array of Structures

An array whose elements are of type structure is called array of structure. It is generally useful when we

need multiple structure variables in our program.

Need for Array of Structures

Suppose we have 50 employees and we need to store the data of 50 employees. So, for that, we need to

define 50 variables of struct Employee type and store the data within that. However, declaring and

handling the 50 variables is not an easy task. Let’s imagine a bigger scenario, like 1000 employees.

So, if we declare the variable this way, it’s not possible to handle this.

struct Employee emp1, emp2, emp3, emp1000;

For that, we can define an array whose data type will be struct Employee that will be easily

manageable.

Declaration of Array of Structures

struct structure_name array_name [number_of_elements];

Initialization of Array of Structures

We can initialize the array of structures in the following ways:

struct structure_name array_name [number_of_elements] = {

 {element1_value1, element1_value2,},

 {element2_value1, element2_value2,},

123

};

The same initialization can also be done as:

struct structure_name array_name [number_of_elements] = {

 element1_value1, element1_value2,

 element2_value1, element2_value2

};

GNU C compilers support designated initialization for structures so we can also use this in the initialization

of an array of structures.

struct structure_name array_name [number_of_elements] = {

 {.element3 = value, .element1 = value,},

 {.element2 = value, .elementN = value,},

};

Example of Array of Structure in C

// C program to demonstrate the array of structures

#include <stdio.h>

// structure template

struct Employee {

 char Name[20];

 int employeeID;

 int WeekAttendence[7];

};

// driver code

int main()

{

 // defining array of structure of type Employee

 struct Employee emp[5];

 // adding data

 for (int i = 0; i < 5; i++) {

 emp[i].employeeID = i;

 strcpy(emp[i].Name, "Amit");

 int week;

 for (week = 0; week < 7; week++) {

 int attendence;

 emp[i].WeekAttendence[week] = week;

 }

 }

 printf("\n");

124

 // printing data

 for (int i = 0; i < 5; i++) {

 printf("Emplyee ID: %d - Employee Name: %s\n",

 emp[i].employeeID, emp[i].Name);

 printf("Attendence\n");

 int week;

 for (week = 0; week < 7; week++) {

 printf("%d ", emp[i].WeekAttendence[week]);

 }

 printf("\n");

 }

 return 0;

}

Output

Emplyee ID: 0 - Employee Name: Amit

Attendence

0 1 2 3 4 5 6

Emplyee ID: 1 - Employee Name: Amit

Attendence

0 1 2 3 4 5 6

Emplyee ID: 2 - Employee Name: Amit

Attendence

0 1 2 3 4 5 6

Emplyee ID: 3 - Employee Name: Amit

Attendence

0 1 2 3 4 5 6

Emplyee ID: 4 - Employee Name: Amit

Attendence

0 1 2 3 4 5 6

6.7 Uses of Structures in C

C structures are used for the following:

1. The structure can be used to define the custom data types that can be used to create some complex

data types such as dates, time, complex numbers, etc. which are not present in the language.

2. It can also be used in data organization where a large amount of data can be stored in different

fields.

3. Structures are used to create data structures such as trees, linked lists, etc.

4. They can also be used for returning multiple values from a function.

6.8 Limitations of C Structures

125

In C language, structures provide a method for packing together data of different types. A Structure is a

helpful tool to handle a group of logically related data items. However, C structures also have some

limitations.

• Higher Memory Consumption: It is due to structure padding.

• No Data Hiding: C Structures do not permit data hiding. Structure members can be accessed by

any function, anywhere in the scope of the structure.

• Functions inside Structure: C structures do not permit functions inside the structure so we cannot

provide the associated functions.

• Static Members: C Structure cannot have static members inside its body.

• Construction creation in Structure: Structures in C cannot have a constructor inside Structures.

6.9 Unions

The Union is a user-defined data type in C language that can contain elements of the different data types

just like structure. But unlike structures, all the members in the C union are stored in the same memory

location. Due to this, only one member can store data at the given instance.

Syntax of Union in C

The syntax of the union in C can be divided into three steps which are as follows:

C Union Declaration

In this part, we only declare the template of the union, i.e., we only declare the members’ names and data

types along with the name of the union. No memory is allocated to the union in the declaration.

union union_name {

 datatype member1;

 datatype member2;

 ...

};

Keep in mind that we have to always end the union declaration with a semi-colon.

Different Ways to Define a Union Variable

We need to define a variable of the union type to start using union members. There are two methods using

which we can define a union variable.

1. With Union Declaration

2. After Union Declaration

1. Defining Union Variable with Declaration

union union_name {

 datatype member1;

 datatype member2;

 ...

} var1, var2, ...;

126

2. Defining Union Variable after Declaration

union union_name var1, var2, var3...;

where union_name is the name of an already declared union.

Accessing Union Members

We can access the members of a union by using the (.) dot operator just like structures.
var1.member1;

where var1 is the union variable and member1 is the member of the union.

The above method of accessing the members of the union also works for the nested unions.

var1.member1.memberA;

Here,

• var1 is a union variable.

• member1 is a member of the union.

• memberA is a member of member1.

Initialization of Union in C

The initialization of a union is the initialization of its members by simply assigning the value to it.
var1.member1 = some_value;

One important thing to note here is that only one member can contain some value at a given instance

of time.

Example of Union

// C Program to demonstrate how to use union

#include <stdio.h>

// union template or declaration

union un {

 int member1;

 char member2;

 float member3;

};

// driver code

int main()

{

 // defining a union variable

 union un var1;

 // initializing the union member

 var1.member1 = 15;

127

 printf("The value stored in member1 = %d",

 var1.member1);

 return 0;

}

Output
The value stored in member1 = 15

Size of Union

The size of the union will always be equal to the size of the largest member of the array. All the less-sized

elements can store the data in the same space without any overflow.

Example 1: C program to find the size of the union

// C Program to find the size of the union

#include <stdio.h>

// declaring multiple unions

union test1 {

 int x;

 int y;

} Test1;

union test2 {

 int x;

 char y;

} Test2;

union test3 {

 int arr[10];

 char y;

} Test3;

// driver code

int main()

{

 // finding size using sizeof() operator

 int size1 = sizeof(Test1);

 int size2 = sizeof(Test2);

 int size3 = sizeof(Test3);

 printf("Sizeof test1: %d\n", size1);

 printf("Sizeof test2: %d\n", size2);

 printf("Sizeof test3: %d", size3);

 return 0;

}

Output

128

Sizeof test1: 4

Sizeof test2: 4

Sizeof test3: 40

6.10 Difference between C Structure and C Union

The following table lists the key difference between the structure and union in C:

Structure Union

The size of the structure is equal to or greater than the total

size of all of its members.

The size of the union is the size of its

largest member.

The structure can contain data in multiple members at the

same time.

Only one member can contain data at

the same time.

It is declared using the struct keyword.
It is declared using the union

keyword.

129

Chapter 7

Pointers

A pointer is defined as a derived data type that can store the address of other C variables or a memory

location. We can access and manipulate the data stored in that memory location using pointers.

As the pointers in C store the memory addresses, their size is independent of the type of data they are

pointing to. This size of pointers in C only depends on the system architecture.

7.1 Syntax of C Pointers

The syntax of pointers is similar to the variable declaration in C, but we use the (*) dereferencing

operator in the pointer declaration.

datatype * ptr;

where

• ptr is the name of the pointer.

• datatype is the type of data it is pointing to.

The above syntax is used to define a pointer to a variable. We can also define pointers to functions,

structures, etc.

7.2 How to Use Pointers?

The use of pointers in C can be divided into three steps:

1. Pointer Declaration

2. Pointer Initialization

3. Pointer Dereferencing

1. Pointer Declaration

In pointer declaration, we only declare the pointer but do not initialize it. To declare a pointer, we use the (

*) dereference operator before its name.

Example
int *ptr;

The pointer declared here will point to some random memory address as it is not initialized. Such pointers

are called wild pointers.

2. Pointer Initialization

Pointer initialization is the process where we assign some initial value to the pointer variable. We generally

use the (&: ampersand) addressof operator to get the memory address of a variable and then store it in

the pointer variable.

Example
int var = 10;

int * ptr;

ptr = &var;

130

We can also declare and initialize the pointer in a single step. This method is called pointer definition as

the pointer is declared and initialized at the same time.

Example
int *ptr = &var;

Note: It is recommended that the pointers should always be initialized to some value before starting using

it. Otherwise, it may lead to number of errors.

3. Pointer Dereferencing

Dereferencing a pointer is the process of accessing the value stored in the memory address specified in the

pointer. We use the same (*) dereferencing operator that we used in the pointer declaration.

Fig. 7.1: Dereferencing a Pointer in C

C Pointer Example

// C program to illustrate Pointers

#include <stdio.h>

void func()

{

 int var = 10;

 // declare pointer variable

 int* ptr;

 // note that data type of ptr and var must be same

 ptr = &var;

 // assign the address of a variable to a pointer

 printf("Value at ptr = %p \n", ptr);

 printf("Value at var = %d \n", var);

 printf("Value at *ptr = %d \n", *ptr);

}

// Driver program

int main()

{

 func();

131

 return 0;

}

Output
Value at ptr = 0x7ffca84068dc

Value at var = 10

Value at *ptr = 10

7.3 Types of Pointers in C

Pointers in C can be classified into many different types based on the parameter on which we are defining

their types. If we consider the type of variable stored in the memory location pointed by the pointer, then

the pointers can be classified into the following types:

1. Integer Pointers

As the name suggests, these are the pointers that point to the integer values.

Syntax
int *ptr;

These pointers are pronounced as Pointer to Integer. Similarly, a pointer can point to any primitive data

type. It can also point to derived data types such as arrays and user-defined data types such as structures.

2. Array Pointer

Pointers and Array are closely related to each other. Even the array name is the pointer to its first element.

They are also known as Pointer to Arrays. We can create a pointer to an array using the given syntax.

Syntax
char *ptr = &array_name;

3. Structure Pointer

The pointer pointing to the structure type is called Structure Pointer or Pointer to Structure. It can be

declared in the same way as we declare the other primitive data types.

Syntax
struct struct_name *ptr;

In C, structure pointers are used in data structures such as linked lists, trees, etc.

4. Function Pointers

Function pointers point to the functions. They are different from the rest of the pointers in the sense that

instead of pointing to the data, they point to the code. Let’s consider a function prototype – int func

(int, char), the function pointer for this function will be

Syntax
int (*ptr)(int, char);

132

Note: The syntax of the function pointers changes according to the function prototype.

5. Double Pointers

In C language, we can define a pointer that stores the memory address of another pointer. Such pointers are

called double-pointers or pointers-to-pointer. Instead of pointing to a data value, they point to another

pointer.

Syntax
datatype ** pointer_name;

Dereferencing Double Pointer
*pointer_name; // get the address stored in the inner level pointer

**pointer_name; // get the value pointed by inner level pointer

Note: In C, we can create multi-level pointers with any number of levels such as – ***ptr3, ****ptr4,

******ptr5 and so on.

6. NULL Pointer

The Null Pointers are those pointers that do not point to any memory location. They can be created by

assigning a NULL value to the pointer. A pointer of any type can be assigned the NULL value.

Syntax
data_type *pointer_name = NULL;

 or
pointer_name = NULL;

It is said to be good practice to assign NULL to the pointers currently not in use.

7. Void Pointer

The Void pointers in C are the pointers of type void. It means that they do not have any associated data

type. They are also called generic pointers as they can point to any type and can be typecasted to any type.

Syntax
void * pointer_name;

One of the main properties of void pointers is that they cannot be dereferenced.

8. Wild Pointers

The Wild Pointers are pointers that have not been initialized with something yet. These types of C-pointers

can cause problems in our programs and can eventually cause them to crash. If values is updated using wild

pointers, they could cause data abort or data corruption.

Example
int *ptr;

char *str;

133

9. Constant Pointers

In constant pointers, the memory address stored inside the pointer is constant and cannot be modified once

it is defined. It will always point to the same memory address.

Syntax
data_type * const pointer_name;

10. Pointer to Constant

The pointers pointing to a constant value that cannot be modified are called pointers to a constant. Here we

can only access the data pointed by the pointer but cannot modify it. Although, we can change the address

stored in the pointer to constant.

Syntax
const data_type * pointer_name;

7.4 Size of Pointers in C

The size of the pointers in C is equal for every pointer type. The size of the pointer does not depend on the

type it is pointing to. It only depends on the operating system and CPU architecture. The size of pointers in

C is

• 8 bytes for a 64-bit System

• 4 bytes for a 32-bit System

The reason for the same size is that the pointers store the memory addresses, no matter what type they are.

As the space required to store the addresses of the different memory locations is the same, the memory

required by one pointer type will be equal to the memory required by other pointer types.

How to find the size of pointers in C?

We can find the size of pointers using the sizeof operator as shown in the following program:

Example: C Program to find the size of different pointer types.

// C Program to find the size of different pointer types

#include <stdio.h>

// dummy structure

struct str {

};

// dummy function

void func(int a, int b){};

int main()

{

 // dummy variables definitions

 int a = 10;

 char c = 'G';

 struct str x;

134

 // pointer definitions of different types

 int* ptr_int = &a;

 char* ptr_char = &c;

 struct str* ptr_str = &x;

 void (*ptr_func)(int, int) = &func;

 void* ptr_vn = NULL;

 // printing sizes

 printf("Size of Integer Pointer \t:\t%d bytes\n",

 sizeof(ptr_int));

 printf("Size of Character Pointer\t:\t%d bytes\n",

 sizeof(ptr_char));

 printf("Size of Structure Pointer\t:\t%d bytes\n",

 sizeof(ptr_str));

 printf("Size of Function Pointer\t:\t%d bytes\n",

 sizeof(ptr_func));

 printf("Size of NULL Void Pointer\t:\t%d bytes",

 sizeof(ptr_vn));

 return 0;

}

Output
Size of Integer Pointer : 8 bytes

Size of Character Pointer : 8 bytes

Size of Structure Pointer : 8 bytes

Size of Function Pointer : 8 bytes

Size of NULL Void Pointer : 8 bytes

As we can see, no matter what the type of pointer it is, the size of each and every pointer is the same.

Now, one may wonder that if the size of all the pointers is the same, then why do we need to declare the

pointer type in the declaration? The type declaration is needed in the pointer for dereferencing and

pointer arithmetic purposes.

7.5 C Pointer Arithmetic

The Pointer Arithmetic refers to the legal or valid arithmetic operations that can be performed on a pointer.

It is slightly different from the ones that we generally use for mathematical calculations as only a limited

set of operations can be performed on pointers. These operations include:

• Increment in a Pointer

• Decrement in a Pointer

• Addition of integer to a pointer

• Subtraction of integer to a pointer

• Subtracting two pointers of the same type

• Comparison of pointers of the same type.

• Assignment of pointers of the same type.

// C program to illustrate Pointer Arithmetic

135

#include <stdio.h>

int main()

{

 // Declare an array

 int v[3] = { 10, 100, 200 };

 // Declare pointer variable

 int* ptr;

 // Assign the address of v[0] to ptr

 ptr = v;

 for (int i = 0; i < 3; i++) {

 // print value at address which is stored in ptr

 printf("Value of *ptr = %d\n", *ptr);

 // print value of ptr

 printf("Value of ptr = %p\n\n", ptr);

 // Increment pointer ptr by 1

 ptr++;

 }

 return 0;

}

Output
Value of *ptr = 10

Value of ptr = 0x7ffcfe7a77a0

Value of *ptr = 100

Value of ptr = 0x7ffcfe7a77a4

Value of *ptr = 200

Value of ptr = 0x7ffcfe7a77a8

7.6 C Pointers and Arrays

In C programming language, pointers and arrays are closely related. An array name acts like a pointer

constant. The value of this pointer constant is the address of the first element. For example, if we have an

array named val then val and &val[0] can be used interchangeably.

If we assign this value to a non-constant pointer of the same type, then we can access the elements of the

array using this pointer.

Example 1: Accessing Array Elements using Pointer with Array Subscript

// C Program to access array elements using pointer

136

#include <stdio.h>

void func()

{

 // Declare an array

 int val[3] = { 5, 10, 15 };

 // Declare pointer variable

 int* ptr;

 // Assign address of val[0] to ptr.

 // We can use ptr=&val[0];(both are same)

 ptr = val;

 printf("Elements of the array are: ");

 printf("%d, %d, %d", ptr[0], ptr[1], ptr[2]);

 return;

}

// Driver program

int main()

{

 func();

 return 0;

}

Output
Elements of the array are: 5, 10, 15

Not only that, as the array elements are stored continuously, we can pointer arithmetic operations such as

increment, decrement, addition, and subtraction of integers on pointer to move between array elements.

Example 2: Accessing Array Elements using Pointer Arithmetic

// C Program to access array elements using pointers

#include <stdio.h>

int main()

{

 // defining array

 int arr[5] = { 1, 2, 3, 4, 5 };

 // defining the pointer to array

 int* ptr_arr = arr;

 // traversing array using pointer arithmetic

137

 for (int i = 0; i < 5; i++) {

 printf("%d ", *ptr_arr++);

 }

 return 0;

}

Output
1 2 3 4 5

This concept is not limited to the one-dimensional array, we can refer to a multidimensional array element

as well using pointers.

7.7 Uses of Pointers in C

The C pointer is a very powerful tool that is widely used in C programming to perform various useful

operations. It is used to achieve the following functionalities in C:

1. Pass Arguments by Reference

2. Accessing Array Elements

3. Return Multiple Values from Function

4. Dynamic Memory Allocation

5. Implementing Data Structures

6. In System-Level Programming, memory addresses are useful.

7. In locating the exact value at some memory location.

8. To avoid compiler confusion for the same variable name.

9. To use in Control Tables.

7.8 Advantages and disadvantages of Pointers

The following are the major advantages of pointers in C:

• Pointers are used for dynamic memory allocation and deallocation.

• An Array or a structure can be accessed efficiently with pointers

• Pointers are useful for accessing memory locations.

• Pointers are used to form complex data structures such as linked lists, graphs, trees, etc.

• Pointers reduce the length of the program and its execution time as well.

Pointers are vulnerable to errors and have the following disadvantages:

• Memory corruption can occur if an incorrect value is provided to pointers.

• Pointers are a little bit complex to understand.

• Pointers are majorly responsible for memory leaks in C.

• Pointers are comparatively slower than variables in C.

• Uninitialized pointers might cause a segmentation fault.

138

Chapter 8

Files

File handling in C is the process of handling file operations such as creating, opening, writing data, reading

data, renaming, and deleting using the C language functions. With the help of these functions, we can

perform file operations to store and retrieve the data in/from the file in our program.

8.1 Need for File Handling in C

If we perform input and output operations using the C program, the data exists as long as the program is

running, when the program is terminated, we cannot use that data again. File handling is required to work

with files stored in external memory, i.e., to store and access the information to/from the computer's external

memory. You can keep the data permanently using file handling.

8.2 Types of Files

A file represents a sequence of bytes. There are two types of files: text files and binary files −

1. Text file − A text file contains data in the form of ASCII characters and is generally used to store

a stream of characters. Each line in a text file ends with a new line character ("\n"), and generally

has a ".txt" extension.

2. Binary file − A binary file contains data in raw bits (0 and 1). Different application programs have

different ways to represent bits and bytes and use different file formats. The image files (.png, .jpg),

the executable files (.exe, .com), etc. are the examples of binary files.

8.3 The FILE Pointer (FILE*)

While working with file handling, you need a file pointer to store the reference of the FILE structure

returned by the fopen() function. The file pointer is required for all file-handling operations.

The fopen() function returns a pointer of the FILE type. FILE is a predefined struct type

in stdio.h and contains attributes such as the file descriptor, size, and position, etc.

typedef struct {

 int fd; /* File descriptor */

 unsigned char *buf; /* Buffer */

 size_t size; /* Size of the file */

 size_t pos; /* Current position in the file */

} FILE;

Declaring a File Pointer (FILE*)

Below is the syntax to declare a file pointer −

FILE* file_pointer;

8.4 Opening (Creating) a File

A file must be opened to perform any operation. The fopen() function is used to create a new file or open

an existing file. You need to specify the mode in which you want to open. There are various file opening

modes explained below, any one of them can be used during creating/opening a file.

https://www.tutorialspoint.com/c_standard_library/stdio_h.htm

139

The fopen() function returns a FILE pointer which will be used for other operations such as reading,

writing, and closing the files.

Syntax

FILE *fopen(const char *filename, const char *mode);

Here, filename is the name of the file to be opened, and mode defines the file's opening mode.

8.5 File Opening Modes

The file access modes by default open the file in the text or ASCII mode. If you are going to handle binary

files, then you will use the following access modes instead of the above-mentioned ones:

"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

There are various modes in which a file can be opened. The following are the different file opening modes:

Mode Description

r Opens an existing text file for reading purposes.

w
Opens a text file for writing. If it does not exist, then a new file is created. Here your program will

start writing content from the beginning of the file.

a
Opens a text file for writing in appending mode. If it does not exist, then a new file is created. Here

your program will start appending content in the existing file content.

r+ Opens a text file for both reading and writing.

 Opens a text file for both reading and writing. It first truncates the file to zero length if it exists,

otherwise creates a file if it does not exist.

a+
Opens a text file for both reading and writing. It creates the file if it does not exist. The reading will

start from the beginning but writing can only be appended.

Example of Creating a File

In the following example, we are creating a new file. The file mode to create a new file will be "w" (write-

mode).

#include <stdio.h>

int main() {

 FILE * file;

140

 // Creating a file

 file = fopen("file1.txt", "w");

 // Checking whether file is

 // created or not

 if (file == NULL) {

 printf("Error in creating file");

 return 1;

 }

 printf("File created.");

 return 0;

}

Output

File created.

Example of Opening a File

In the following example, we are opening an existing file. The file mode to open an existing file will be "r"

(read-only). You may also use other file opening mode options explained above.

Note: There must be a file to be opened.

#include <stdio.h>

int main() {

 FILE * file;

 // Opening a file

 file = fopen("file1.txt", "r");

 // Checking whether file is

 // opened or not

 if (file == NULL) {

 printf("Error in opening file");

 return 1;

 }

 printf("File opened.");

 return 0;

}

Output

File opened.

141

Closing a File

Each file must be closed after performing operations on it. The fclose() function closes an opened file.

Syntax

int fclose(FILE *fp);

The fclose() function returns zero on success, or EOF if there is an error in closing the file.

The fclose() function actually flushes any data still pending in the buffer to the file, closes the file, and

releases any memory used for the file. The EOF is a constant defined in the header file stdio.h.

Example of Closing a File

#include <stdio.h>

int main() {

 FILE * file;

 // Opening a file

 file = fopen("file1.txt", "w");

 // Checking whether file is

 // opened or not

 if (file == NULL) {

 printf("Error in opening file");

 return 1;

 }

 printf("File opened.");

 // Closing the file

 fclose(file);

 printf("\nFile closed.");

 return 0;

}

Output

File opened.

File closed.

8.6 Writing to a Text File

The following library functions are provided to write data in a file opened in writeable mode −

• fputc(): Writes a single character to a file.

• fputs(): Writes a string to a file.

• fprintf(): Writes a formatted string (data) to a file.

Writing Single Character to a File

142

The fputc() function is an unformatted function that writes a single character value of the argument "c"

to the output stream referenced by "fp".

int fputc(int c, FILE *fp);

Example

In the following code, one character from a given char array is written into a file opened in the "w" mode:

#include <stdio.h>

int main() {

 FILE *fp;

 char * string = "C Programming tutorial from TutorialsPoint";

 int i;

 char ch;

 fp = fopen("file1.txt", "w");

 for (i = 0; i < strlen(string); i++) {

 ch = string[i];

 if (ch == EOF)

 break;

 fputc(ch, fp);

 }

 printf ("\n");

 fclose(fp);

 return 0;

}

Output

After executing the program, "file1.txt" will be created in the current folder and the string is written to it.

Writing String to a File

The fputs() function writes the string "s" to the output stream referenced by "fp". It returns a non-

negative value on success, else EOF is returned in case of any error.

int fputs(const char *s, FILE *fp);

Example

The following program writes strings from the given two-dimensional char array to a file.

#include <stdio.h>

int main() {

143

 FILE *fp;

 char *sub[] = {"C Programming Tutorial\n", "C++ Tutorial\n", "Python

Tutorial\n", "Java Tutorial\n"};

 fp = fopen("file2.txt", "w");

 for (int i = 0; i < 4; i++) {

 fputs(sub[i], fp);

 }

 fclose(fp);

 return 0;

}

Output

When the program is run, a file named "file2.txt" is created in the current folder and saves the following

lines:
C Programming Tutorial

C++ Tutorial

Python Tutorial

Java Tutorial

Writing Formatted String to a File

The fprintf() function sends a formatted stream of data to the disk file represented by the FILE

pointer.

int fprintf(FILE *stream, const char *format [, argument, ...])

Example

In the following program, we have an array of struct type called "employee". The structure has a string,

an integer, and a float element. Using the fprintf() function, the data is written to a file.

#include <stdio.h>

struct employee {

 int age;

 float percent;

 char *name;

};

int main() {

 FILE *fp;

 struct employee emp[] = {

 {25, 65.5, "Ravi"},

 {21, 75.5, "Roshan"},

 {24, 60.5, "Reena"}

 };

144

 char *string;

 fp = fopen("file3.txt", "w");

 for (int i = 0; i < 3; i++) {

 fprintf(fp, "%d %f %s\n", emp[i].age, emp[i].percent,

emp[i].name);

 }

 fclose(fp);

 return 0;

}

Output

When the above program is executed, a text file is created with the name "file3.txt" that stores the employee

data from the struct array.

8.7 Reading from a Text File

The following library functions are provided to read data from a file that is opened in read mode −

• fgetc(): Reads a single character from a file.

• fgets(): Reads a string from a file.

• fscanf(): Reads a formatted string from a file.

Reading Single Character from a File

The fgetc() function reads a character from the input file referenced by "fp". The return value is the

character read, or in case of any error, it returns EOF.

int fgetc(FILE * fp);

Example

The following example reads the given file in a character by character manner till it reaches the end of file.

#include <stdio.h>

int main(){

 FILE *fp ;

 char ch ;

 fp = fopen ("file1.txt", "r");

 while(1) {

 ch = fgetc (fp);

 if (ch == EOF)

 break;

 printf ("%c", ch);

 }

 printf ("\n");

 fclose (fp);

145

}

Output

Run the code and check its output.

Reading String from a File

The fgets() function reads up to "n − 1" characters from the input stream referenced by "fp". It copies

the read string into the buffer "buf", appending a null character to terminate the string.

Example

This following program reads each line in the given file till the end of the file is detected:

include <stdio.h>

int main() {

 FILE *fp;

 char *string;

 fp = fopen ("file2.txt", "r");

 while (!feof(fp)) {

 fgets(string, 256, fp);

 printf ("%s", string) ;

 }

 fclose (fp);

}

Output

Run the code and check its output.

Reading Formatted String from a File

The fscanf() function in C programming language is used to read formatted input from a file.

int fscanf(FILE *stream, const char *format, ...)

Example

In the following program, we use the fscanf() function to read the formatted data in different types of

variables. Usual format specifiers are used to indicate the field types (%d, %f, %s, etc.)

#include <stdio.h>

int main() {

 FILE *fp;

 char *s;

 int i, a;

 float p;

146

 fp = fopen ("file3.txt", "r");

 if (fp == NULL) {

 puts ("Cannot open file"); return 0;

 }

 while (fscanf(fp, "%d %f %s", &a, &p, s) != EOF)

 printf ("Name: %s Age: %d Percent: %f\n", s, a, p);

 fclose(fp);

 return 0;

}

Output

When the above program is executed, it opens the text file "file3.txt" and prints its contents on the screen.

After running the code, you will get an output like this:
Name: Ravi Age: 25 Percent: 65.500000

Name: Roshan Age: 21 Percent: 75.500000

Name: Reena Age: 24 Percent: 60.500000

8.8 Binary Read and Write Functions

The read/write operations are done in a binary form in the case of a binary file. You need to include the

character "b" in the access mode ("wb" for writing a binary file, "rb" for reading a binary file).

There are two functions that can be used for binary input and output: the fread() function and

the fwrite() function. Both of these functions should be used to read or write blocks of memories,

usually arrays or structures.

8.9 Writing to Binary File

The fwrite() function writes a specified chunk of bytes from a buffer to a file opened in binary write

mode. Here is the prototype to use this function:

fwrite(*buffer, size, no, FILE);

Example

In the following program, an array of a struct type called employee has been declared. We use

the fwrite() function to write one block of byte, equivalent to the size of one employee data, in a file

that is opened in wb mode.

#include <stdio.h>

struct employee {

 int age;

 float percent;

 char name[10];

};

int main() {

147

 FILE *fp;

 struct employee e[] = {

 {25, 65.5, "Ravi"},

 {21, 75.5, "Roshan"},

 {24, 60.5, "Reena"}

 };

 char *string;

 fp = fopen("file4.dat", "wb");

 for (int i = 0; i < 3; i++) {

 fwrite(&e[i], sizeof (struct employee), 1, fp);

 }

 fclose(fp);

 return 0;

}

Output

When the above program is run, the given file will be created in the current folder. It will not show the

actual data, because the file is in binary mode.

8.10 Reading from Binary File

The fread() function reads a specified chunk of bytes from a file opened in binary read mode to a buffer

of the specified size. Here is the prototype to use this function:

fread(*buffer, size, no, FILE);

Example

In the following program, an array of a struct type called employee has been declared. We use

the fread() function to read one block of byte, equivalent to the size of one employee data, in a file

that is opened in rb mode.

#include <stdio.h>

struct employee {

 int age;

 float percent;

 char name[10];

};

int main() {

 FILE *fp;

 struct employee e;

148

 fp = fopen ("file4.dat", "rb");

 if (fp == NULL) {

 puts ("Cannot open file");

 return 0;

 }

 while (fread (&e, sizeof (struct employee), 1, fp) == 1)

 printf ("Name: %s Age: %d Percent: %f\n", e.name, e.age, e.percent);

 fclose(fp);

 return 0;

}

Output

When the above program is executed, it opens the file "file4.dat" and prints its contents on the screen. After

running the code, you will get an output like this:
Name: Ravi Age: 25 Percent: 65.500000

Name: Roshan Age: 21 Percent: 75.500000

Name: Reena Age: 24 Percent: 60.500000

