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Syllabus 

 

Title of the course  : Database Management Systems 

Subject Code   : CS-313      

Weekly load   : 7 Hrs      LTP 3-0-4  

Credit    : 5 (Lecture 3; Practical 2) 
 
Course Outcomes: At the end of the course, the student will be able to: 

CO1 Understand functional components of the DBMS. 

CO2 Design database schema and study different data models. 
CO3 Understand the concept of normalization. 
CO4 Understand the concepts of PL/SQL. 
 

CO/PO Mapping : (Strong(S)/Medium(M)/Weak(W) indicates strength of correlation) 

COs 
Programme Outcomes (POs) 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 
CO1  S        S 
CO2  S        S 
CO3  S        S 
CO4  S M M      S 

 
Theory      

Unit Main Topics Course outlines Lecture(s)

Unit-1 1. Introduction 

 

Database Systems, Database and its purpose, Characteristics 
of the database approach, Advantages and disadvantages of 
database systems.  

06 

2. Classification 
of DBMS 
Users 

Classification of DBMS Users; Actors on the scene, 
Database Administrators, Database Designers, End Users, 
System Analysts and Application Programmers, Workers 
behind the scene 

06 

3. Database 
System Concepts 
and Architecture 

Data models, schemas, instances, data base state. DBMS 
Architecture; The External level, The conceptual level, The 
internal level 

06 

4. Mappings Mappings. Data Independence; Logical data Independence, 
Physical data Independence. 

03 

Unit-2 5. Data Models Relational Data Model, Network Data Model, Hierarchical 08 



 Prepared by: Dr. Jagdeep Singh, AP (CSE), SLIET Longowal 

3 
 

Model 

 
 

6. Data Modeling 
using E.R. 
Model 

 Entities and Attributes, Entity types and Entity sets, 
attribute and domain of attributes, Relationship among 
entities. 

05 

7. Keys Key, Different types of keys, Integrity Principles. 06 

8. Normalization Functional dependencies, First, Second and Third  
normal forms, Boyce/Codd normal form. 
 

08 

 Advanced Topics Big Data, Data Analytics, Physical Storage Systems, Data 
Storage Structures, Indexing, Transactions, Recovery 
Systems, PL/SQL 

 

                                          
Total=48 

 
TEXT BOOKS:  
1. Data base System Concepts, Silberschatz, Korth, McGraw hill, Sixth Edition. 
2. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGraw Hill 
3rd Edition.  
 
REFERENCE BOOKS:  
1. Fundamentals of Database Systems, Elmasri Navathe Pearson Education.  
2. An Introduction to Database systems, C.J. Date, A.Kannan, S.Swami Nadhan, Pearson, Eight 
Edition 
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Unit: 1: Introduction to Database Systems 

A Database Management System (DBMS) is a sophisticated software system that allows users to store, 
manage, and retrieve large amounts of data efficiently. DBMSs are crucial in organizing data for 
enterprises of all sizes, providing a structure for data storage and access. 

Various industries rely on database applications to manage their day-to-day operations: 

- Banking: Tracks every customer transaction. 
- Airlines: Manages flight reservations and schedules. 
- Universities: Records student registrations and grades. 
- Sales: Tracks customer orders and generates personalized recommendations. 
- Manufacturing: Manages production, inventory, orders, and the supply chain. 
- Human Resources: Stores employee records, including salaries and tax deductions. 

In today's data-driven world, databases are essential to managing almost every aspect of life, from online 
shopping to finance management. 

Purpose of Database Systems 
Before the advent of DBMSs, applications were built on top of traditional file systems. However, this posed 
several significant challenges: 

- Data Redundancy and Inconsistency: Different files stored the same data in multiple formats, leading to 
discrepancies. 
- Difficulty Accessing Data: Every new task required a new program to retrieve data. 
- Data Isolation: Related data was stored in different files and formats. 
- Integrity Problems: Business rules were embedded in program code and hard to enforce. 
- Atomicity Issues: Failures could result in partial updates, leaving data inconsistent. 
- Concurrent Access: Multiple users accessing the same data led to conflicts. 
- Security Issues: It was difficult to restrict access to sensitive information. 

Database systems address these issues by offering structured data management, ensuring consistency, 
security, and efficient access. 

Levels of Abstraction 
A DBMS uses multiple levels of abstraction to manage data efficiently. These include: 

- Physical Level: Describes how data is physically stored on hardware. 
- Logical Level: Describes the structure of the data and relationships between data types. 
- View Level: Provides different perspectives of the data, hiding complex details. 

At the physical level, the DBMS defines how the data is stored on disk, while the logical level focuses on 
the organization of data into tables and relationships. The view level simplifies data for users by providing 
customized views of the data, such as only showing relevant fields to specific users. 
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Instances and Schemas 
Schemas define the logical structure of the database, acting as blueprints for organizing data. They specify 
what data is stored and how it is related but do not include the actual data. 

- Physical Schema: Defines how the data is stored physically. 
- Logical Schema: Defines how data is logically organized, such as tables and relationships. 

An instance refers to the actual data stored in the database at a given moment, while the schema remains 
constant. Physical Data Independence allows changes to the physical schema without affecting the logical 
schema. 

Data Models 
A data model is a collection of tools used to describe the structure, relationships, semantics, and constraints 
of data. Common types of data models include: 

- Relational Model: Organizes data into tables (relations) of rows and columns. 
- Entity-Relationship (ER) Model: Uses entities and relationships to represent data. 
- Object-Based Models: Incorporate object-oriented concepts into databases. 
- XML: Used to represent hierarchical and semi-structured data. 

Data Manipulation Language (DML) 
DML is a language used to access and manipulate data stored in a database. It consists of two main types: 

- Procedural DML: The user specifies both what data is needed and how to get it. 
- Non-Procedural DML: The user specifies only what data is needed, while the DBMS decides how to 
retrieve it. 

SQL (Structured Query Language) is the most widely used non-procedural DML. For example, to find the 
name of a customer with a specific ID, you would write the following query: 

SELECT customer_name FROM customer WHERE customer_id = '001'; 

SQL 
SQL is the standard language for interacting with relational databases. It allows users to retrieve and 
manipulate data using simple queries. 

For example, to find the balance of accounts held by a customer with ID '001': 

SELECT account.balance FROM account JOIN depositor ON depositor.account_number = 
account.account_number WHERE depositor.customer_id = '001'; 
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Introduction to the Relational Model 

Structure of Relational Databases 
In a relational database, data is stored in tables called relations. A relation consists of rows (tuples) and 
columns (attributes), where each row represents a record and each column represents a property of the 
record. For example, consider the following table representing instructors at a university. 

ID Name Department Salary 

101 Alice Johnson Physics 85,000 

102 Bob Smith Computer Science 92,000 

103 Carol White Mathematics 78,000 

In this relation, each row represents an instructor, and the columns represent the attributes of the instructors 
such as their ID, name, department, and salary. 

Database Schema 
A database schema defines the logical structure of the database. It specifies the tables and the attributes that 
make up those tables. For example, the schema for the 'instructor' table could be described as: 

instructor(ID, name, dept_name, salary) 

A database instance refers to the actual data stored in the database at a given point in time. While the 
schema remains constant, the instance can change as data is added, updated, or deleted. 

Keys 
In a relational database, keys are crucial for identifying unique records in a relation. There are several types 
of keys: 

Superkey: A set of attributes that can uniquely identify a tuple. For example, {ID} is a superkey for the 
'instructor' relation. 

Candidate key: A minimal superkey. {ID} is a candidate key because it is the minimal set of attributes 
needed to uniquely identify an instructor. 

Primary key: A candidate key chosen to be the main key for the relation. In this case, {ID} is the primary 
key. 

Foreign key: An attribute in one relation that refers to the primary key of another relation. For example, the 
'dept_name' in the 'instructor' table could reference the 'department' table. 

Relational Algebra 
Relational algebra is a procedural query language that allows the manipulation of data in relational 
databases. It consists of a set of operations that take one or more relations as input and produce a new 
relation as output. The basic operations in relational algebra include selection, projection, union, set 
difference, Cartesian product, and renaming. 
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Select Operation (σ) 
The select operation retrieves tuples that satisfy a given condition. For example, to find all instructors who 
work in the 'Physics' department, the following query can be used: 

σ dept_name = 'Physics' (instructor) 

This operation retrieves all tuples where the 'dept_name' is 'Physics'. 

Project Operation (∏) 
The project operation retrieves specified columns from a relation. For example, to find the ID and salary of 
all instructors, we use the following query: 

∏ ID, salary (instructor) 

This operation will return a relation containing only the 'ID' and 'salary' attributes of the instructor table. 

Cartesian Product (×) 
The Cartesian product combines tuples from two relations. For instance, if we have 'instructor' and 'teaches' 
relations, the Cartesian product combines each tuple from the instructor table with every tuple from the 
teaches table. 

Example of Cartesian product between 'instructor' and 'teaches' relations: 

Instructor ID Instructor Name Course ID Year 

101 Alice Johnson CS101 2022 

102 Bob Smith MATH203 2022 

Join Operation (⋈) 
The join operation is used to combine two relations based on a common attribute. For example, to join the 
'instructor' and 'teaches' relations based on the instructor's ID, we write the following query: 

instructor ⋈ instructor.ID = teaches.ID teaches 

This operation combines the rows from 'instructor' and 'teaches' where the instructor's ID matches. 

Union, Set Difference, and Set Intersection 
The union operation combines two relations into one. Set difference finds the tuples that exist in one 
relation but not in the other, while set intersection finds tuples that exist in both relations. 

Example query for union operation: 

To find all courses taught in either Fall 2021 or Spring 2022, we can write: 

∏ course_id (σ semester = 'Fall' AND year = 2021 (section)) ∪ ∏ course_id (σ semester = 'Spring' AND 
year = 2022 (section)) 
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SQL: Structured Query Language 

 

History of SQL 

SQL, initially known as SEQUEL, was developed as part of IBM's System R project at the San Jose 
Research Laboratory. It was later renamed to Structured Query Language (SQL) and standardized by ANSI 
and ISO. Over time, several major versions of SQL were introduced: 

 SQL-86 
 SQL-89 
 SQL-92 
 SQL:1999 (made Y2K-compliant) 
 SQL:2003 

Most modern commercial database systems support features from SQL-92, along with custom features 
specific to each system. 

 

SQL Components 

SQL is divided into several core components, each handling specific database operations: 

 Data Manipulation Language (DML): Allows querying and modifying data (e.g., inserting, 
updating, deleting records). 

 Data Definition Language (DDL): Commands for defining schemas, setting up tables, and 
specifying integrity constraints. 

 View Definition: Commands for creating views, which are virtual tables derived from queries. 
 Transaction Control: Manages the start and end of transactions, ensuring consistency. 
 Embedded SQL: Enables embedding SQL statements within programming languages. 
 Authorization: Specifies access rights for tables and views, allowing or restricting user 

operations. 

 

Data Definition Language (DDL) 

DDL allows users to define and modify the database schema, including: 

 Schema Definitions: Structure for each table. 
 Attribute Data Types: Specifies the type of data (e.g., integer, varchar). 
 Integrity Constraints: Ensures consistency (e.g., primary and foreign keys). 
 Indexing: Specifies which fields should be indexed for efficient access. 
 Authorization: Controls user access and permissions. 
 Physical Storage: Defines how data is stored on disk. 

 

Domain Types in SQL 

SQL supports a variety of data types to represent different kinds of data, such as: 



 Prepared by: Dr. Jagdeep Singh, AP (CSE), SLIET Longowal 

9 
 

 char(n): Fixed-length character strings. 
 varchar(n): Variable-length character strings. 
 int: Integer values. 
 smallint: A smaller subset of integer values. 
 numeric(p, d): Fixed-point numbers with p digits and d digits after the decimal (e.g., 

numeric(3,1)). 
 real and double precision: Floating-point numbers. 
 float(n): Floating-point numbers with at least n digits of precision. 

 

Creating Tables in SQL 

Tables in SQL are created with the create table command. Here’s a general syntax example: 

sql 
 
create table table_name ( 
   column1 data_type, 
   column2 data_type, 
   ... , 
   primary key (column_name), 
   foreign key (column_name) references other_table(column_name) 
); 

Example: Creating an instructor table: 

sql 
    
create table instructor ( 
   ID char(5), 
   name varchar(20), 
   dept_name varchar(20), 
   salary numeric(8,2), 
   primary key (ID) 
); 
 

Integrity Constraints 

SQL provides integrity constraints to maintain data accuracy and consistency: 

 Primary Key: Ensures each record has a unique identifier. 
 Foreign Key: Enforces a relationship between two tables by referencing the primary key of 

another table. 
 Not Null: Prevents fields from having null (unknown) values. 

 

Basic Query Structure 

A typical SQL query follows this structure: 
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sql 
  
select column1, column2 
from table1, table2 
where condition; 

Example: Retrieving all instructor names from an instructor table: 

sql 
    
select name 
from instructor; 
 

 

 

 

 

 

Fig.1 : Create database 
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Fig. 2: Create Table 

 

Fig. 3. Insert into command 
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The select Clause 

The select clause specifies which columns to retrieve in the result set. 

Example: Listing department names from the instructor table, without duplicates: 

sql 
  
select distinct dept_name 
from instructor; 

SQL is case-insensitive, meaning Name, NAME, and name are all equivalent. 

 

Arithmetic Expressions in the select Clause 

Arithmetic operations can be performed within the select clause. 

Example: Calculating monthly salary by dividing the salary field by 12: 

sql 
  
select ID, name, salary / 12 as monthly_salary 
from instructor; 

 

The where Clause 

The where clause filters records based on specific conditions. 

Example: Finding all instructors in the "Computer Science" department: 

sql 
  
select name 
from instructor 
where dept_name = 'Computer Science'; 

 

The from Clause and Cartesian Product 

The from clause lists tables involved in the query and generates a Cartesian product if multiple tables are 
included. 

Example: Combining data from instructor and teaches tables: 

sql 
  
select * 
from instructor, teaches; 
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Join Operations 

Joins in SQL combine records from two or more tables based on related columns. 

Example: Listing names of instructors who taught specific courses: 

sql 
  
select name, course_id 
from instructor join teaches on instructor.ID = teaches.ID; 

Set Operations 

SQL allows combining the results of multiple queries using set operations: 

 union: Combines results from two queries, eliminating duplicates. 
 intersect: Finds common records between two queries. 
 except: Returns records present in one query but not the other. 

Example: Finding courses offered in both Fall 2017 and Spring 2018: 

sql 
    
(select course_id from section where semester = 'Fall' and year = 2017) 
intersect 
(select course_id from section where semester = 'Spring' and year = 2018); 
 

Null Values 

SQL supports null values to represent missing or unknown data. Arithmetic operations with null yield null 
results. 

Example: Finding instructors with unknown salary: 

sql 
    
select name 
from instructor 
where salary is null; 
 

Aggregate Functions 

SQL includes several aggregate functions: 

 avg: Calculates the average value. 
 min and max: Find the minimum and maximum values, respectively. 
 sum: Adds up all values in a column. 
 count: Counts the number of records. 

Example: Calculating the average salary in the "Computer Science" department: 
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sql 
    
select avg(salary) 
from instructor 
where dept_name = 'Computer Science'; 
 

Grouping and the Having Clause 

Grouping allows applying aggregate functions to subsets of data, while the having clause filters groups 
based on aggregate conditions. 

Example: Finding departments where the average salary exceeds $42,000: 

sql 
    
select dept_name, avg(salary) as avg_salary 
from instructor 
group by dept_name 
having avg(salary) > 42000; 
 

Nested Queries and Subqueries 

SQL supports subqueries, which are queries nested within another query. They allow complex filtering and 
calculations within a single query structure. 

Example: Listing instructors who earn more than the average salary of all instructors: 

sql 
    
select name 
from instructor 
where salary > (select avg(salary) from instructor); 
 
 
 

 

Modifications in SQL 

SQL allows data manipulation via commands for inserting, updating, and deleting records. 

1. Insertion: 

sql 
    
insert into instructor values ('10211', 'Smith', 'Biology', 66000); 

2. Deletion: 

sql 
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delete from instructor where dept_name = 'Finance'; 

3. Updating: 

sql 
    
update instructor set salary = salary * 1.05 where salary < 70000; 

 

 

Intermediate SQL 

This class introduces advanced SQL concepts such as join operations, views, transactions, integrity 
constraints, data types, indexing, and authorization mechanisms. These concepts are key for performing 
more sophisticated database queries and operations. 

 

Join Operations 

In SQL, join operations are used to combine data from two or more tables based on related columns. The 
result is a new table containing data that meets the join condition. Join operations include: 

1. Natural Join: Matches rows with the same values in columns that share the same name in both 
tables. For example, if we want to list students and the courses they are enrolled in: 

select name, course_id 
from student natural join takes; 

2. Inner Join: Retrieves rows that have matching values in both tables using the on keyword to 
specify the condition. To find students and the titles of the courses they are enrolled in: 

select name, title 
from student inner join course on takes.course_id = course.course_id; 

3. Outer Join: Ensures that all rows from one or both tables are returned, even if there are no 
matching rows in the other table. Types include: 

o Left Outer Join: Returns all rows from the left table, with null for missing matches from 
the right table. 

o Right Outer Join: Returns all rows from the right table, with null for missing matches 
from the left table. 

o Full Outer Join: Returns rows from both tables, including unmatched rows with null 
values. 

Example of a left outer join: 

select course_id, title 
from course left outer join prereq on course.course_id = prereq.course_id; 
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Fig. 4:  Full Join 

 

Fig.5: Outer Join 
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Fig.6: Left Join 

 

 

Fig. 7: Inner Join 
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Views in SQL 

A view is a virtual table based on the result of a query. Views allow users to see data without revealing the 
full database structure. For example, to create a view that lists instructors without their salaries: 

create view faculty as 
select ID, name, dept_name 
from instructor; 

To retrieve instructors in the Biology department: 

select name 
from faculty 
where dept_name = 'Biology'; 

You can also create a view based on another view, such as restricting instructors to those in a specific 
building: 

create view bio_instructors_watson as 
select name 
from faculty 
where building = 'Watson'; 

 

Transactions in SQL 

A transaction in SQL is a sequence of statements that are treated as a single unit of work, ensuring 
database consistency. Transactions follow the ACID properties and can either be committed (making 
changes permanent) or rolled back (undoing changes). 

Example transaction: 

begin transaction; 
update account set balance = balance - 100 where account_id = 'A001'; 
update account set balance = balance + 100 where account_id = 'A002'; 
commit; 

 

Integrity Constraints 

Integrity constraints ensure the consistency and accuracy of data. Common integrity constraints include: 

1. Primary Key: Ensures uniqueness for each record in a table. 
2. Foreign Key: Ensures that values in one table correspond to valid values in another table. 
3. Check Constraint: Specifies a condition that must hold true for all records. 

For instance, here’s a check constraint that ensures semester values are valid: 

create table section ( 
course_id varchar(8), 
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semester varchar(6), 
check (semester in ('Fall', 'Winter', 'Spring', 'Summer')) 
); 

 

Referential Integrity 

Referential integrity ensures that relationships between tables are consistent. When a foreign key is defined 
in one table, it must correspond to a valid primary key in another table. 

If a department is referenced in the instructor table, deleting that department might cause inconsistency 
unless we use cascading actions. For example: 

create table course ( 
dept_name varchar(20), 
foreign key (dept_name) references department 
on delete cascade 
on update cascade 
); 

 

Indexing in SQL 

Indexes are used to speed up query processing by enabling quicker access to rows. An index acts like a 
lookup table that the database uses to find data more efficiently. 

For instance, creating an index on the ID column of the student table: 

create index studentID_index on student(ID); 

With this index, a query searching for a student by ID will be faster: 

select * 
from student 
where ID = '12345'; 

 

Authorization in SQL 

SQL provides authorization mechanisms to control what users can do with data. Types of authorizations 
include: 

 Read: Allows users to read data. 
 Insert: Allows users to add data. 
 Update: Allows users to modify data. 
 Delete: Allows users to remove data. 

To grant select permission on the department table to user Amit, we can write: 
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grant select on department to Amit; 

 

Roles in SQL 

Roles allow administrators to group permissions together and assign them to users collectively. For 
instance, we can create a role called instructor and assign permissions to it: 

create role instructor; 
grant select on takes to instructor; 
grant instructor to Amit; 

Amit now inherits all the permissions assigned to the instructor role. 

 

Advanced SQL 

This class covers advanced SQL features, such as integrating SQL with programming languages, creating 
functions and triggers, handling recursive queries, working with advanced aggregation, and using Online 
Analytical Processing (OLAP). These tools enable SQL users to manage complex data scenarios and 
execute sophisticated queries. 

 

Accessing SQL from a Programming Language 

SQL is a declarative language designed for querying databases, but it doesn't offer the same control flow 
and flexibility as a general-purpose programming language. To combine SQL with more dynamic logic, it's 
often integrated into other programming languages such as Java, Python, or C++. Two common ways to 
achieve this integration are: 

 Embedded SQL: SQL statements are directly embedded in the host language's code. When 
compiled, these SQL statements are converted into function calls to the database. 

 API-based SQL Access: APIs (like JDBC for Java) allow the program to send SQL queries to the 
database at runtime and process the results. 

Java Database Connectivity (JDBC) 

In Java, JDBC is the API that facilitates interaction with databases. It allows you to send SQL commands 
and process the returned data. Here’s an example of how to establish a connection and execute a query 
using JDBC: 

java 
  
public static void JDBCexample(String dbid, String userid, String passwd) { 
    try (Connection conn = DriverManager.getConnection( 
            "jdbc:mysql://localhost:3306/school", userid, passwd); 
         Statement stmt = conn.createStatement();) { 
        // Execute SQL queries and handle results 
    } catch (SQLException sqle) { 
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        System.out.println("SQLException: " + sqle); 
    } 
} 

In Python, a similar connection to the database can be achieved using the sqlite3 library: 

python 
  
import sqlite3 
 
def get_student_data(db_name): 
    conn = sqlite3.connect(db_name) 
    cursor = conn.cursor() 
    cursor.execute("SELECT * FROM students WHERE gpa > 3.5") 
    for row in cursor.fetchall(): 
        print(row) 
    conn.close() 

This Python example retrieves data from the students table where the GPA is greater than 3.5. 

 

Functions and Procedures in SQL 

SQL allows you to create functions and procedures that can store reusable logic directly within the 
database. Functions return a value, while procedures may perform actions but do not return a value. 

SQL Function Example 

Consider a scenario where you need to count how many courses a department offers. You can write an SQL 
function for this: 

create function course_count(dept_name varchar(20)) 
returns integer 
begin 
declare c_count integer; 
select count(*) into c_count 
from course 
where course.dept_name = dept_name; 
return c_count; 
end; 

To find out which departments offer more than five courses: 

select dept_name, budget 
from department 
where course_count(dept_name) > 5; 

Similarly, if you want to calculate the total hours an employee has worked, you can define a function like 
this: 

create function total_hours_worked(emp_id char(5)) 
returns integer 
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begin 
declare hours_worked integer; 
select sum(hours) into hours_worked 
from timesheet 
where timesheet.emp_id = emp_id; 
return hours_worked; 
end; 

This function can be used to find employees who have worked more than 40 hours in a week: 

select emp_name 
from employee 
where total_hours_worked(emp_id) > 40; 

 

Triggers 

Triggers are SQL commands that automatically execute when certain actions are performed on a table, 
such as inserting or updating a record. Triggers are often used to maintain data integrity or to automate 
business rules. 

Trigger Example 

Imagine that we want to automatically update a student’s total credits when they pass a course. Here’s a 
trigger that accomplishes this: 

create trigger update_credits after update of takes on (grade) 
referencing new row as nrow 
referencing old row as orow 
for each row 
when nrow.grade is not null and (orow.grade is null or orow.grade <> nrow.grade) 
begin atomic 
update student 
set tot_cred = tot_cred + (select credits from course where course.course_id = nrow.course_id) 
where student.id = nrow.id; 
end; 

This trigger checks if the grade has changed from null or "F" to a passing grade and updates the total credits 
accordingly. 

Now, consider an example where we need to apply a bonus automatically when an employee’s salary is 
updated. The following trigger ensures that employees with a salary over $80,000 receive a 10% bonus: 

create trigger apply_bonus after update of employee on (salary) 
referencing new row as nrow 
for each row 
when nrow.salary > 80000 
begin atomic 
update employee 
set bonus = salary * 0.1 
where employee.id = nrow.id; 
end; 
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Recursive Queries 

SQL supports recursive queries, which are particularly useful when dealing with hierarchical data such as 
organizational charts or course prerequisites. Recursive queries allow the query to refer to itself, producing 
results until no further data can be retrieved. 

Recursive Query for Course Prerequisites 

To find all courses that are prerequisites for another course, you can write a recursive query like this: 

with recursive prereq_chain(course_id, prereq_id) as ( 
select course_id, prereq_id from prereq 
union 
select prereq_chain.course_id, prereq.prereq_id 
from prereq_chain, prereq 
where prereq_chain.prereq_id = prereq.course_id 
) 
select * from prereq_chain; 

This query will return all courses that are directly or indirectly required as prerequisites. 

A similar scenario arises when you want to find all employees who report to a certain manager, directly or 
indirectly. You can write a recursive query to handle this: 

with recursive emp_hierarchy(emp_id, manager_id) as ( 
select emp_id, manager_id from employee 
where manager_id = 'M001' 
union 
select employee.emp_id, employee.manager_id 
from emp_hierarchy, employee 
where emp_hierarchy.emp_id = employee.manager_id 
) 
select * from emp_hierarchy; 

 

Advanced Aggregation Features 

SQL’s advanced aggregation functions allow for more complex analysis, such as ranking data. Functions 
like rank(), dense_rank(), and percent_rank() are commonly used for ranking rows based on the values of 
specific columns. 

Ranking Example 

To assign a rank to students based on their GPA: 

select student_id, gpa, rank() over (order by gpa desc) as rank 
from student_grades; 

This query assigns a rank to each student, with the highest GPA receiving the highest rank. 
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For another use case, you might want to rank employees based on their sales performance: 

select emp_id, total_sales, rank() over (order by total_sales desc) as sales_rank 
from sales_performance; 

This query will rank employees based on their total sales, with the top seller receiving the highest rank. 

 

Windowing Functions 

Windowing functions in SQL allow for calculations across sets of rows that are related to the current row. 
These are useful for tasks like calculating running totals, moving averages, or cumulative sums. 

Moving Average Example 

To calculate a moving average of sales over time, you can use a window function like this: 

select date, 
avg(sales_amount) over (order by date rows between 1 preceding and 1 following) as moving_avg 
from sales_data; 

This query calculates the average sales value for each date, using the current date, the day before, and the 
day after. 

Similarly, to calculate a moving average of website visitors, you might write: 

select visit_date, 
avg(visits) over (order by visit_date rows between 1 preceding and 1 following) as visit_avg 
from website_traffic; 

 

OLAP (Online Analytical Processing) 

OLAP tools allow for the analysis of large amounts of data by performing multi-dimensional queries. SQL 
supports OLAP operations with functions like cube() and rollup() to summarize data across multiple 
dimensions. 

OLAP Cube Example 

To analyze sales data across multiple dimensions (item, color, and size), you can use the cube() function: 

select item_name, color, size, sum(quantity_sold) 
from sales 
group by cube(item_name, color, size); 

This will generate a summary for every possible combination of item, color, and size. 

For summarizing website traffic by device, location, and time, the cube() function can be used as follows: 
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select device_type, location, visit_time, sum(visits) 
from website_visits 
group by cube(device_type, location, visit_time); 

 

 

 

 

 

 

 

 

 

 

 

 

Unit: 2 

Database Design Using the E-R Model 

The Entity-Relationship (E-R) Model is a foundational tool used in designing databases.  

Design Phases 

The design of a database follows a structured process, generally broken down into three main phases: 

1. Initial Phase: This stage involves gathering and characterizing the data requirements of the 
prospective database users. The goal is to fully understand the data needs of the application. 

2. Second Phase: Here, the focus is on selecting a suitable data model and using it to create a 
conceptual schema for the database. This schema should reflect the functional requirements of the 
system, detailing the types of transactions and operations that will be performed on the data. 

3. Final Phase: This phase translates the abstract schema into an actual database structure. It 
involves: 

o Logical Design: Determining the organization of data into relation schemas, deciding 
what attributes are essential, and how they should be structured. 

o Physical Design: Planning the physical layout of the database on storage media for 
efficient access and modification. 

Effective database design avoids pitfalls such as redundancy (repeated information, which may lead to 
inconsistency) and incompleteness (design flaws that make certain functions difficult or impossible to 
perform). 
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Database Design Approaches 

There are multiple approaches to designing a database schema: 

 Entity-Relationship (E-R) Model: The E-R model represents data in terms of entities (distinct 
objects) and relationships (associations among entities). Entities have attributes that describe their 
characteristics, while relationships link entities together. 

 Normalization Theory: This formal approach (covered in more detail in the next section) 
identifies potentially flawed designs and provides a way to improve them. 

The E-R model is illustrated using E-R diagrams that visually represent entities, relationships, and 
constraints. 

 

Entity Sets 

An entity represents a real-world object that is distinguishable from other objects. Examples include a 
person, a company, or an event. An entity set is a collection of similar entities, like all employees in a 
company. 

Each entity has attributes, or characteristics, that provide more details. For example: 

 Employee = (Employee_ID, Name, Department, Salary) 
 Product = (Product_ID, Name, Price, Category) 

In each entity set, a unique identifier or primary key is chosen. This key uniquely identifies each entity 
within the set. 

 

Representing Entity Sets in E-R Diagrams 

In E-R diagrams: 

 Rectangles represent entity sets. 
 Attributes are listed inside the rectangle for each entity set, with the primary key underlined to 

indicate its uniqueness. 

For example, a Customer entity set might be represented with attributes like Customer_ID (primary key), 
Name, and Contact_Number. 

 

Relationship Sets 

A relationship defines an association among two or more entities. For example, the relationship 
"purchases" could link a Customer and a Product. The relationship set contains all such associations, 
typically between entities from different sets. 
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Consider the works_for relationship, which associates employees with their departments. The relationship 
set might include instances like: 

(Employee_ID_123, HR), (Employee_ID_456, Marketing) 

In E-R diagrams, diamonds represent relationship sets, and lines link them to the relevant entity sets. 

 

Attributes in Relationship Sets 

Relationships can also have attributes. For instance, the advisor relationship set between Student and 
Instructor entities could include an attribute like advising_start_date, which indicates when the advising 
relationship began. 

For example, consider a relationship set supervises between Manager and Project, with an attribute 
start_date that records when supervision began. 

 

Roles in Relationships 

Sometimes, an entity set plays multiple roles in a relationship. For example, in a mentor relationship, an 
Employee entity may serve as both the mentor and the mentee. 

In such cases, roles are labeled to clarify each entity’s position in the relationship. For example: 

 Mentor (role) - Mentee (role) 

 

Degree of a Relationship Set 

Relationships generally involve two entity sets (binary relationships), but occasionally, relationships may 
involve three or more entity sets (ternary or higher). 

For instance, a project_assignment relationship might involve Employee, Project, and Role entities. This 
relationship captures which employee works on which project in what capacity. 

 

Complex Attributes 

Attributes can be categorized as: 

 Simple: Cannot be divided (e.g., age). 
 Composite: Can be subdivided into parts (e.g., address might include street, city, and 

postal_code). 
 Single-valued or Multivalued: A single-valued attribute has only one value (e.g., SSN), while a 

multivalued attribute can have multiple values (e.g., phone_numbers). 
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Attributes may also be derived if they can be calculated from other attributes, such as calculating age based 
on date_of_birth. 

 

Mapping Cardinality Constraints 

Cardinality constraints specify the number of entities that can be associated with another entity in a 
relationship. In binary relationships, there are four possible cardinalities: 

1. One-to-One (1:1): An entity in one set is related to at most one entity in another set. 
o Example: Each manager is assigned to at most one department. 

2. One-to-Many (1:N): An entity in one set is associated with multiple entities in another set. 
o Example: A department can have many employees, but each employee belongs to only 

one department. 
3. Many-to-One (N:1): Many entities in one set relate to a single entity in another. 

o Example: Many employees report to a single manager. 
4. Many-to-Many (M:M): Multiple entities in both sets are associated with each other. 

o Example: Students can enroll in multiple courses, and each course can have multiple 
students. 

 

Total and Partial Participation 

Total participation means every entity in a set is involved in at least one relationship. For instance, every 
Student might need an Advisor. 

Partial participation means only some entities participate in the relationship. For instance, only some 
Employees might be part of a mentorship program. 

 

Primary Key for Entity and Relationship Sets 

A primary key is a unique identifier for each entity in a set. In relationship sets, the primary key may 
combine the primary keys of the participating entities. 

For instance, in an assignment relationship between Employee and Project, the primary key may consist of 
the Employee_ID and Project_ID. 

 

Weak Entity Sets 

A weak entity set is an entity that cannot be uniquely identified by its own attributes alone. Instead, it 
depends on an associated strong entity set. For example, a Dependent entity may be linked to an 
Employee, where Dependent lacks unique identifying attributes and is therefore a weak entity. 

Weak entities are represented in E-R diagrams with a double rectangle and connected to their identifying 
entity by a double diamond. 
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Redundant Attributes 

Redundant attributes replicate information and should generally be avoided. For example, if 
Department_Name is already part of a Department entity, including it in an Employee entity as well could 
lead to inconsistency if department details change. 

 

Extended E-R Model Features 

The E-R model can be enhanced with features such as: 

 Specialization and Generalization: A specialization hierarchy allows for creating subgroups 
within an entity set, while generalization combines entity sets into a broader category. 

 Aggregation: Aggregation treats a relationship as a higher-level entity, which enables 
relationships between relationships. 

In a specialization, an Employee could be specialized into Manager and Staff categories, each with unique 
attributes. 
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Mappings: 

In databases, mappings refer to the associations between different schema levels (external, conceptual, and 
internal) that ensure data consistency across views and allow users to access data without needing to 
understand underlying storage details. 

1. Data Independence: This property allows changes to one schema level without affecting others. It 
enables flexibility and adaptability within the database system. 

2. Logical Data Independence: Allows changes to the conceptual schema, like adding new fields or 
tables, without requiring changes to the external schema or application programs. It is harder to 
achieve than physical data independence. 

3. Physical Data Independence: Allows changes to the internal schema, such as changes in storage or 
indexing methods, without affecting the conceptual schema or application programs. It is easier to 
achieve and helps optimize storage and access. 

Integrity Principles: 

Integrity Principles in databases ensure data accuracy, consistency, and reliability. Key principles include: 

 Entity Integrity: Ensures each table has a primary key, and that primary key values are unique and 
not null, ensuring each row can be uniquely identified. 

 Referential Integrity: Maintains consistent relationships between tables by ensuring that foreign 
key values either match a primary key value in another table or are null, preventing orphan 
records. 

 Domain Integrity: Enforces valid data entries by restricting column values to a specific data type, 
format, or range, preserving data correctness within defined limits. 

 

Normalization 

Normalization in relational database design is the process of structuring data to minimize redundancy and 
improve data integrity. This class covers key principles of normalization, including features of good 
relational design, types of dependencies, various normal forms, and decomposition strategies. 

 

Features of Good Relational Design 

Good relational design organizes data logically to minimize redundancy and dependency. For example, if 
we combine an instructor table with a department table, we may end up with a table like in_dep below. This 
can lead to redundant information and null values, especially if new departments are added without 
instructors: 

Instructor_ID Name Salary Dept_Name Building Budget 

101 Alice 90000 Physics Science 500000 
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Instructor_ID Name Salary Dept_Name Building Budget 

102 Bob 80000 Chemistry Arts 300000 

103 Carol NULL Humanities NULL NULL 

 

Decomposition 

Decomposition splits a relation into smaller, more meaningful tables. This process can improve database 
integrity and reduce redundancy. However, not all decompositions are effective. Consider the employee 
table below: 

ID Name Street City Salary 

E01 Alice Maple St. New York 70000 

E02 Bob Oak St. Boston 80000 

If we decompose this into: 

Table 1: employee1 

ID Name 

E01 Alice 

E02 Bob 

Table 2: employee2 

Name Street City Salary 

Alice Maple St. New York 70000 

Bob Oak St. Boston 80000 

This decomposition loses the direct relationship between ID and address attributes, leading to ambiguity 
and potential data loss if two employees share the same name. 
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Lossless Decomposition 

A lossless decomposition allows data to be decomposed without loss of information. If a relation R with 
attributes (A, B, C) is decomposed into: 

Table 3: R1 

A B 

A1 B1 

A2 B2 

Table 4: R2 

B C 

B1 C1 

B2 C2 

If B determines one of the original attributes in R, we can recombine these tables to recreate the original R 
without data loss, achieving a lossless decomposition. 

 

Functional Dependencies (FDs) 

Functional dependencies (FDs) specify that an attribute or set of attributes uniquely determines another 
attribute. For instance: 

Instructor Table 

Student_ID Name Dept_Name 

S01 Alice Physics 

S02 Bob Chemistry 

Here, Student_ID uniquely identifies each student, represented by Student_ID → Name. Similarly, if 
Dept_Name determines the Building in a Department table, we have Dept_Name → Building. 

 

Trivial Functional Dependencies 

A trivial dependency always holds if β is a subset of α. For example: 
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ID Name 

101 Ann 

102 Bob 

Since ID determines itself, we have ID, Name → ID, a trivial dependency. 

 

Keys and Functional Dependencies 

A superkey uniquely identifies each tuple in a relation, and a candidate key is a minimal superkey. 
Consider the in_dep schema with attributes (ID, name, salary, dept_name, building, budget), where the 
following dependencies might hold: 

 Dept_Name → Building 
 ID → Dept_Name 

This structure makes ID a candidate key for identifying each instructor uniquely. 

 

Boyce-Codd Normal Form (BCNF) 

A relation is in BCNF if, for every FD α → β, at least one of the following holds: 

1. α → β is trivial. 
2. α is a superkey. 

For example, consider in_dep with attributes (ID, name, salary, dept_name, building, budget) and 
dependencies: 

 Dept_Name → Building, Budget 

To achieve BCNF, we decompose the table into instructor and department as follows: 

Instructor Table 

ID Name Salary Dept_Name 

101 Alice 90000 Physics 

102 Bob 80000 Chemistry 

Department Table 
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Dept_Name Building Budget 

Physics Science 500000 

Chemistry Arts 300000 

 

Third Normal Form (3NF) 

Third Normal Form (3NF) allows dependencies where a non-superkey attribute in β is part of a candidate 
key. Consider the following dept_advisor schema: 

Dept_Advisor Table 

s_ID i_ID Dept_Name 

S01 I101 Physics 

S02 I102 Chemistry 

If i_ID → Dept_Name and s_ID, Dept_Name → i_ID, this relation is in 3NF but not necessarily in BCNF. 

 

Multivalued Dependencies (MVDs) 

Multivalued dependencies arise when one attribute determines multiple independent values in another. 
For instance, an inst_info table with (ID, child_name, phone_number) can be decomposed as follows to 
avoid redundancy: 

Inst_Child Table 

ID Child_Name 

101 Emma 

101 Ryan 

Inst_Phone Table 

ID Phone_Number 

101 555-1234 

101 555-5678 
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Here, each child’s name and phone number are stored independently, avoiding redundancy. 

 

Fourth Normal Form (4NF) 

A relation is in 4NF if it is in BCNF and has no non-trivial multivalued dependencies. By decomposing 
inst_info with attributes (ID, child_name, phone_number) as shown above, we avoid redundancy and 
achieve 4NF. 

 

Dependency Preservation and Canonical Cover 

Dependency preservation ensures that FDs can be enforced on individual tables without reconstructing 
the original relation. To achieve this, we use a canonical cover to simplify FDs without losing dependency 
information. Consider the following FDs: 

1. A → BC 
2. B → C 
3. A → B 

The canonical cover simplifies these to: 

 A → B 
 B → C 

Ensuring dependency preservation helps maintain data integrity and efficiency in database operations. 

 

ADVANCED TOPICS 

Big Data 

With the massive amounts of data generated by web usage, social media, and the Internet of Things (IoT), 
handling and processing such large datasets have become a challenge.  

 

1. Motivation for Big Data 

As the volume of data increases, traditional databases struggle to handle the following three main 
characteristics of big data: 

 Volume: The sheer size of the data has grown exponentially. 
 Velocity: Data is generated and needs to be processed at an increasingly high speed. 
 Variety: There are diverse types of data, such as structured, semi-structured, and unstructured data 

(e.g., web logs, social media posts, sensor data). 

Analyzing big data is critical for optimizing advertisements, structuring web pages, and personalizing user 
content. 



 Prepared by: Dr. Jagdeep Singh, AP (CSE), SLIET Longowal 

36 
 

 

2. Querying Big Data 

In environments that deal with massive datasets, the traditional ACID properties of databases (Atomicity, 
Consistency, Isolation, Durability) are often sacrificed for scalability and speed. Querying big data requires 
scalable systems that can support non-relational data and high-throughput query processing. 

 

3. Big Data Storage Systems 

Several approaches are used for storing big data efficiently: 

 Distributed File Systems: These store data across many machines while giving the appearance of 
a single file system. Popular examples include Google File System (GFS) and Hadoop 
Distributed File System (HDFS). 

 Sharding: This partitions data across multiple databases based on a partition key. 
 Key-Value Storage Systems: These systems store data as key-value pairs, allowing fast access to 

records across multiple machines. 
 Parallel and Distributed Databases: These databases run across multiple machines, splitting data 

and queries for parallel processing. 

 

4. Distributed File Systems 

A distributed file system (DFS) stores data across many machines but provides a unified file system view. 
These systems are highly scalable and provide fault tolerance by replicating data across nodes. 

 Example: Google File System (GFS) and Hadoop Distributed File System (HDFS) are two 
examples where data is split into blocks (e.g., 64 MB each) and replicated across multiple nodes to 
ensure reliability. 

 

5. Hadoop File System Architecture 

The Hadoop Distributed File System (HDFS) divides files into blocks, typically 64 MB in size, and 
replicates these blocks across several machines for fault tolerance. The architecture involves: 

 NameNode: Manages the metadata, such as mapping file names to block IDs and blocks to the 
physical locations. 

 DataNode: Stores actual data blocks and serves them to clients. 

Data is accessed by clients directly from the DataNodes, with the NameNode providing information on 
where blocks are located. 
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6. Sharding 

Sharding is the process of partitioning data across multiple databases. Data is divided into "shards" based 
on a shard key such as user_ID. For example: 

 Data with key values between 1 and 100,000 might be stored on one database, while values 
between 100,001 and 200,000 are stored on another. 

While sharding offers scalability, it requires applications to track which database holds which portion of the 
data, increasing complexity. 

 

7. Key-Value Storage Systems 

Key-value storage systems handle massive datasets by storing records as key-value pairs and distributing 
them across multiple machines. 

 Examples: 
o Amazon S3 stores objects as large files with associated metadata. 
o Google BigTable and Apache Cassandra offer a wide-table format, allowing many 

attribute names to be associated with each key. 

These systems ensure availability and consistency by replicating data across machines. 

 

8. Data Representation 

Semi-structured data formats like JSON and XML are popular for representing key-value data in NoSQL 
databases. JSON allows data to be stored in flexible schemas, supporting various complex data structures. 

 Example of JSON: 

json 
   
{ 
  "ID": "22222", 
  "name": { 
    "firstname": "Albert", 
    "lastname": "Einstein" 
  }, 
  "deptname": "Physics", 
  "children": [ 
    {"firstname": "Hans", "lastname": "Einstein"}, 
    {"firstname": "Eduard", "lastname": "Einstein"} 
  ] 
} 
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9. Parallel and Distributed Databases 

Parallel databases distribute their workload across multiple machines (a cluster) to process data faster. 
These databases ensure data availability by replicating data but face challenges such as frequent query 
restarts when machines fail. 

MapReduce systems, such as Hadoop, work around failures by continuing the processing on functioning 
machines without needing to restart the entire query. 

 

10. Replication and Consistency 

To ensure availability, distributed databases often replicate data across multiple nodes. This ensures that if 
one machine fails, another can continue serving requests. However, replication introduces challenges with 
consistency: 

 Consistency: Ensures that all replicas contain the same data, and all reads reflect the latest 
updates. 

 Availability: Guarantees that the system remains operational even when parts of it fail. 

CAP Theorem states that a distributed system can guarantee only two of the following three: Consistency, 
Availability, and Partition Tolerance (i.e., the system remains operational despite network partitions). 

 

11. MapReduce Paradigm 

MapReduce is a programming model used for processing large datasets across many machines. It abstracts 
the complexities of distributed and parallel processing, allowing developers to focus on the logic of their 
computations. 

The MapReduce process involves: 

1. Map Function: Takes an input, processes it, and produces key-value pairs. 
2. Reduce Function: Groups these pairs and processes them to provide a final output. 

 Example: Counting the number of occurrences of each word in a collection of documents. The 
map function outputs word-count pairs, and the reduce function aggregates these counts by word. 

 

12. Hadoop and MapReduce 

Hadoop is an open-source implementation of MapReduce, widely used for processing large datasets. It uses 
HDFS for data storage, and map and reduce functions can be written in several programming languages 
(e.g., Java, Python). 
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13. Streaming Data 

Streaming data refers to continuous data flow generated in real-time from various sources such as stock 
markets, IoT sensors, and social media platforms. Stream processing systems allow us to run continuous 
queries on this data to monitor and trigger actions in real-time. 

 Windowing: Breaks up a continuous stream of data into smaller windows (e.g., hourly or session-
based windows) for processing. 

 Pattern Matching: Detects specific patterns in data streams and triggers actions. 

 

14. Graph Databases 

Graph databases model data in terms of nodes (entities) and edges (relationships). This model is highly 
efficient for representing and querying complex, interconnected datasets such as social networks or 
recommendation systems. 

 Example: In a social network graph, nodes represent users, and edges represent "friend" or 
"follower" relationships. 

Graph Query Languages like Neo4J allow for easy traversal of nodes and relationships, making it 
simpler to execute complex queries, such as finding all friends-of-friends in a social network. 

 

15. Bulk Synchronous Processing (BSP) 

Bulk Synchronous Processing (BSP) is a framework used for processing large graphs in parallel. It 
divides computation into multiple supersteps, where each node in the graph sends and receives messages 
from its neighbors, updating its state iteratively. The process continues until all nodes complete their tasks. 

 Example: Google's Pregel and Apache's Giraph are based on the BSP framework, enabling 
efficient parallel processing of graphs with billions of nodes and edges. 

Data Analytics 

Data analytics involves processing data to uncover patterns, correlations, and predictive models. It is vital 
for making informed business decisions, from personalized customer suggestions to high-level stock 
management strategies.  

 

1. Data Warehousing 

A data warehouse serves as a central repository of information, consolidating data from multiple sources 
and storing it under a unified schema. Unlike operational databases, data warehouses store historical data, 
providing a foundation for complex decision-making processes. 

 Example: A retail company may gather data from sales, inventory, and customer feedback into a 
warehouse to analyze purchasing trends and stock requirements. 
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Design Considerations 

1. Source-Driven Architecture: Data sources transmit updates to the warehouse periodically. 
2. Destination-Driven Architecture: The warehouse requests updates from sources. 
3. Synchronous vs. Asynchronous Replication: While real-time synchronization is ideal, 

asynchronous replication often balances performance with minor latency. 
4. Schema Integration: A unified schema helps in consistent querying and analysis across datasets 

from diverse sources. 

 

2. Multidimensional Data and Warehouse Schemas 

Data in a warehouse often uses a multidimensional model to structure information as fact and dimension 
tables. 

 Fact Table Example: The sales fact table might include fields like item_id, store_id, customer_id, 
date, quantity, and price. 

 Dimension Table Example: The store dimension table could include details such as store_id, 
location, and manager_name. 

A common schema type is the star schema, where a central fact table is surrounded by dimension tables. 
More complex structures, such as the snowflake schema, further decompose dimension tables. 

 

3. Online Analytical Processing (OLAP) 

OLAP enables interactive, multi-dimensional analysis, allowing users to perform aggregations, 
comparisons, and other calculations on large datasets. 

 OLAP Operations: 
o Pivoting: Adjusts the displayed dimensions in a cross-tab. 
o Slicing: Filters the dataset for specific values within a dimension. 
o Roll-Up: Aggregates data to a higher level (e.g., daily sales aggregated to monthly 

totals). 
o Drill-Down: Explores data at a finer level (e.g., breaking down monthly totals into daily 

figures). 

Example OLAP Query 

Consider a sales table with fields for item_name, color, size, and quantity. An OLAP query might compute 
the total quantity sold by item and color, forming a cross-tab: 

Item Name Dark Pastel White 

Shirt 150 200 50 

Pants 100 120 90 
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4. Data Mining 

Data mining is the automated analysis of large datasets to find meaningful patterns. These patterns often 
form the basis of predictive models or descriptive statistics that businesses can use for decision-making. 

Types of Data Mining Tasks 

1. Prediction: Uses past data to forecast outcomes. 
o Example: Predicting customer credit risk based on attributes like income, job type, and 

age. 
2. Classification: Assigns items to predefined classes. 

o Example: Classifying emails as "spam" or "not spam" based on keywords and sender 
details. 

3. Clustering: Groups similar items. 
o Example: Grouping customers with similar purchase histories to design targeted 

marketing campaigns. 
4. Association Rules: Finds relationships among data items. 

o Example: If a customer buys bread, they are likely to also buy milk. 

 

5. Decision Trees 

Decision trees classify data by partitioning it into subsets based on attribute values. Each node in the tree 
represents a test on an attribute, and branches represent possible outcomes. A decision tree’s leaf nodes 
represent classes. 

 Example: A decision tree predicting loan default based on income, employment_status, and 
credit_score might have nodes where: 

o If income > 50k and credit_score > 700, then No Default. 
o If income <= 50k and employment_status = Part-time, then Potential Default. 

 

6. Bayesian Classifiers 

Bayesian classifiers apply Bayes' theorem to calculate the probability of an outcome based on observed 
data. 

 Bayes’ Theorem: P(C∣D)=P(D∣C)⋅P(C)P(D)P(C|D) = \frac{P(D|C) \cdot 
P(C)}{P(D)}P(C∣D)=P(D)P(D∣C)⋅P(C) where: 

o P(C∣D)P(C|D)P(C∣D) is the probability of class CCC given data DDD. 
o P(D∣C)P(D|C)P(D∣C) is the probability of observing DDD if CCC is true. 

In practice, Naïve Bayes simplifies this calculation by assuming attribute independence, making it 
computationally feasible for large datasets. 
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7. Support Vector Machine (SVM) Classifiers 

SVMs are used for binary classification, finding a boundary that best separates data points from different 
classes. In 2D space, this boundary is a line; in higher dimensions, it’s a hyperplane. 

 Example: To classify emails as "spam" or "not spam," SVMs identify an optimal dividing line 
that separates spam emails (based on words like "free" or "prize") from legitimate emails. 

 

8. Neural Networks 

Neural networks are computational models inspired by the human brain, composed of layers of 
interconnected nodes (neurons) that process data. 

Components of a Neural Network 

1. Input Layer: Receives raw data. 
2. Hidden Layers: Perform calculations, learning patterns in the data. 
3. Output Layer: Produces predictions. 

 Example: For image recognition, a neural network can classify an image as a "cat" or "dog" by 
analyzing pixel patterns and adjusting weights through training. 

 

9. Regression Analysis 

Regression aims to predict a continuous value rather than classify an instance. Given values for variables 
X1,X2,...,XnX_1, X_2, ... , X_nX1,X2,...,Xn, regression predicts an outcome YYY using a formula like: 

Y=a0+a1⋅X1+a2⋅X2+…+an⋅XnY = a_0 + a_1 \cdot X_1 + a_2 \cdot X_2 + \ldots + a_n \cdot X_nY=a0
+a1⋅X1+a2⋅X2+…+an⋅Xn 

 Example: Predicting house prices based on features like square footage, neighborhood, and age. 

 

10. Association Rules 

Association rules reveal relationships between items in a dataset, such as frequent itemsets in transaction 
data. 

 Support: Indicates the proportion of the population that satisfies both antecedent and consequent. 
 Confidence: Measures how often the consequent is true when the antecedent is true. 

Example 

An online bookstore may find that customers who buy “Database Systems” are also likely to buy 
“Operating System Concepts.” This association can then be used to recommend books during checkout. 
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11. Clustering 

Clustering groups data points such that items in the same group are more similar to each other than to 
those in other groups. 

 Example: Clustering students by study habits can identify groups needing different levels of 
academic support. 

Hierarchical Clustering builds clusters at various levels, with techniques like agglomerative clustering 
(bottom-up) and divisive clustering (top-down). 

 

12. Text Mining and Sentiment Analysis 

Text mining applies data mining to textual content, while sentiment analysis determines the emotional 
tone in texts, such as reviews or social media posts. 

 Example: A sentiment analysis of customer reviews on a product can help gauge overall customer 
satisfaction. 

 

 

Physical Storage Systems 

This part explores the physical storage mechanisms that underlie modern database systems, covering topics 
such as storage media types, the storage hierarchy, disk and flash storage mechanisms, RAID (Redundant 
Arrays of Independent Disks), and hardware considerations for data integrity and reliability. 

 

1. Classification of Physical Storage Media 

Storage media are classified based on data volatility and performance characteristics: 

1. Volatile Storage: Loses data when power is turned off. 
o Example: Cache memory and main memory. 

2. Non-Volatile Storage: Retains data without power, encompassing secondary and tertiary storage. 
o Example: Hard disks and optical storage. 

Factors influencing storage media selection include speed (data access rates), cost per unit of data, and 
reliability. 

 

2. Storage Hierarchy 

The storage hierarchy arranges storage types by speed and cost: 
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 Primary Storage: Fast, volatile storage like cache and main memory. 
 Secondary Storage: Non-volatile storage with moderate speed, e.g., flash memory and magnetic 

disks. 
 Tertiary Storage: Slow, archival storage, often offline, such as magnetic tape. 

Each tier has a specific role, balancing data access speed and storage costs. 

 

3. Storage Interfaces 

There are several standards for connecting storage devices: 

 SATA (Serial ATA): Supports data transfer speeds up to 6 Gbps. 
 SAS (Serial Attached SCSI): Supports up to 12 Gbps. 
 NVMe (Non-Volatile Memory Express): Works with PCIe to achieve transfer rates up to 24 

Gbps, suitable for high-performance flash storage. 

 

4. Magnetic Hard Disk Mechanism 

A magnetic disk is organized into circular tracks on a spinning platter, divided into sectors, which are the 
smallest data units that can be read or written. 

 Tracks and Sectors: 
o Each platter holds 50,000 to 100,000 tracks. 
o Sectors are typically 512 bytes, with inner tracks holding 500 to 1,000 sectors and outer 

tracks up to 2,000. 

Data access involves positioning the read-write head over the appropriate track as the disk spins. Multiple 
platters may be mounted on a single spindle, and each track on the platters forms a cylinder. 

 

5. Disk Performance Measures 

Performance of disks is typically measured by: 

 Seek Time: The time taken to position the head over the correct track. Average seek time ranges 
from 4 to 10 ms. 

 Rotational Latency: The wait for the desired sector to pass under the head, averaging 4 to 11 ms. 
 Data Transfer Rate: Ranges from 25 to 200 MB/s, varying with disk model and track location. 

 

6. Flash Storage 

Flash memory is a type of non-volatile storage with two main types: 

 NOR Flash: Common in low-capacity, high-speed reads. 
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 NAND Flash: Used in high-capacity SSDs, read speeds vary from 20 to 100 microseconds for a 
512-byte page. 

Flash requires pages to be erased before rewriting, typically in blocks of 256 KB to 1 MB. A Flash 
Translation Table (FTT) maps logical to physical page addresses, enabling efficient data retrieval and 
wear leveling. 

 

7. SSD Performance Metrics 

Solid-State Drives (SSDs) support high input/output operations per second (IOPS): 

 Reads: 100,000 IOPS with 32 parallel requests on SATA and up to 350,000 on NVMe. 
 Writes: 100,000 IOPS on high-end models. 

SSDs achieve data transfer rates of up to 3 GB/s on NVMe, with hybrid drives combining flash cache and 
magnetic storage for better performance. 

 

8. Storage Class Memory 

Storage Class Memory (SCM) bridges the gap between SSDs and DRAM, offering faster access than 
traditional SSDs. Intel’s 3D XPoint technology, marketed as Intel Optane, is an SCM that provides high-
speed, non-volatile storage. 

 

9. RAID: Redundant Arrays of Independent Disks 

RAID organizes multiple disks into arrays, enhancing storage capacity, speed, and reliability through 
redundancy. 

RAID Levels: 

 RAID 0: Block-level striping without redundancy, used for high-speed applications where data 
loss is acceptable. 

 RAID 1: Mirrored disks with block striping, offering high reliability and fast reads. 
 RAID 5: Block-interleaved distributed parity, distributing data and parity across disks, improving 

performance. 
 RAID 6: Similar to RAID 5 but includes two parity blocks for enhanced protection against 

multiple disk failures. 

Each RAID level has specific use cases depending on cost, performance, and reliability requirements. 

 

10. Hardware Issues 

RAID systems can be implemented in two ways: 
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 Software RAID: Managed by the operating system without special hardware. 
 Hardware RAID: Uses dedicated hardware with features like non-volatile RAM for tracking in-

progress writes, reducing the risk of corruption from power loss. 

Hot Swapping allows disks to be replaced without shutting down the system, maintaining availability. 

 

11. Optimization of Disk-Block Access 

Optimizing disk access involves techniques such as: 

 Buffering: Uses in-memory buffers to store frequently accessed data. 
 Read-Ahead: Reads additional blocks in anticipation of upcoming requests. 
 Disk-Arm Scheduling: Reduces arm movement to minimize access time, using algorithms like 

the elevator algorithm to sequence requests efficiently. 

 

Magnetic Tapes 

Magnetic tapes offer high-capacity storage, primarily used for backup and archival purposes. While tapes 
hold large volumes (up to several petabytes), they are limited to sequential access, making them unsuitable 
for frequent, random access but effective for low-cost data storage. 

 

 

 

 

Data Storage Structures 

Database storage structures organize data for efficient storage and retrieval, enhancing database 
performance and reliability. This class covers file organization, record structures, clustering techniques, and 
memory management methods. 

 

1. File Organization 

In databases, data is stored in files, each containing records made up of fields. Here, files can be organized 
by record type and size: 

 Fixed-size records: Simple files containing records of one specific type with a fixed size. 
 Multiple Files for Different Relations: Separate files store records for different tables or entities. 

Example: An Employee table with fixed-size records might look like this: 
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Employee_ID Name Department Salary 

001 Alice HR 60000 

002 Bob IT 75000 

003 Carol Marketing 67000 

 

2. Fixed-Length Records 

Fixed-length records have a set amount of space. When records are deleted, several methods can manage 
the vacant space: 

 Shift records to fill the gap. 
 Reposition the last record in the file to the deleted spot. 
 Use a free list to manage empty slots for reuse. 

Example: After deleting record 002 (Bob), the updated file might look like this: 

Employee_ID Name Department Salary 

001 Alice HR 60000 

(empty) (empty) (empty) (empty) 

003 Carol Marketing 67000 

 

3. Variable-Length Records 

Variable-length records allow records to have different sizes, handling fields like varying text lengths and 
multivalued attributes. 

A slotted page structure can manage these records, storing details like the number of records, the end of 
free space, and the location of each record. 

Example: An Employee table with variable-length addresses could look like this: 

Employee_ID Name Address 

001 Alice 123 Maple St., Apt 10 

002 Bob 45 Oak St. 

003 Carol 12 Pine Ln., Suite 305 
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4. Storing Large Objects 

For large objects (LOBs) like images or videos, databases can: 

1. Store them externally as files. 
2. Split them into smaller pieces across multiple records. 

Example: In PostgreSQL’s TOAST method, a document might be divided into chunks of 1 KB each and 
stored in multiple rows. 

 

5. Organization of Records in Files 

Different record organizations in a file serve various purposes: 

 Heap Organization: Records are placed in any available spot. 
 Sequential Organization: Stores records in a sorted order by a search key. 
 Multitable Clustering: Stores related records from different tables together. 

Example: For a Student-Course clustering: 

Student_ID Name Course_Code Course_Name 

S001 Alice C101 Database 

S002 Bob C102 Programming 

S001 Alice C103 Algorithms 

 

6. Heap File Organization 

In heap file organization, records are stored in the first available slot, making insertion flexible and 
efficient. 

A free-space map tracks free blocks, allowing efficient space allocation for new records. 

Example: For an Inventory table: 

Item_ID Description Quantity Location 

1001 Monitor 30 A1 

1002 Keyboard 15 B3 

(empty) (empty) (empty) (empty) 
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7. Sequential File Organization 

Sequential file organization suits tasks requiring ordered data processing. 

For insertions in sorted sequences, overflow blocks may store additional records, keeping main records in 
order. 

Example: An ordered Customer file with an overflow block might look like this: 

Customer_ID Name Location 

C001 Alice NY 

C002 Bob CA 

Overflow: Dan TX 

 

8. Multitable Clustering 

With multitable clustering, related records from multiple tables are stored in one file for faster data 
retrieval. 

Example: Clustering Instructor and Department records: 

Instructor_ID Name Dept_ID Dept_Name 

I001 Smith D001 Science 

I002 Jones D002 Mathematics 

I003 Doe D001 Science 

 

9. Partitioning 

Partitioning divides a table into smaller segments, allowing storage across devices and optimized access for 
recent data. 

Example: A Sales table partitioned by year: 

Year Partition 

2021 sales_2021 

2022 sales_2022 
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Querying 2022 sales only accesses sales_2022, enhancing query speed. 

 

10. Data Dictionary Storage 

A data dictionary stores database metadata, containing information on tables, attributes, storage structures, 
and access privileges. 

Example: Data dictionary entry for a Customer table: 

Attribute Type Length Indexed 

Customer_ID INT 4 Yes 

Name VARCHAR 50 No 

Email VARCHAR 100 Yes 

 

11. Buffer Management 

The buffer manager uses main memory to store disk blocks temporarily, optimizing access. 

Pinned Blocks remain in memory during active operations, while replacement policies (like LRU or 
MRU) manage block retention. 

Example: A query on a large table may use LRU to retain frequently accessed blocks and remove others. 

 

12. Buffer Replacement Policies 

Replacement policies determine which blocks stay in memory. Key policies include: 

 LRU (Least Recently Used): Removes the oldest accessed block. 
 MRU (Most Recently Used): Retains recent blocks. 
 Toss-Immediate: Discards blocks after use. 

Example: For a join operation, MRU might retain blocks from both tables if repeatedly accessed. 

 

13. Optimization of Disk Block Access 

Disk access optimizations include: 

 Forced Output: Writes blocks to disk to ensure data recovery. 
 Nonvolatile Buffers: Temporarily store blocks to reduce disk writes. 
 Log Disk: Sequentially logs updates to minimize disk movement. 
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Example: Log-based storage systems save update logs to prevent scattered writes. 

 

14. Column-Oriented Storage 

Columnar storage stores each attribute in a separate file, ideal for analytical queries focused on specific 
columns. 

Example: In a columnar sales database: 

Date Product Quantity 

2023-01-01 Monitor 20 

2023-01-02 Keyboard 15 

Only the Quantity column is accessed if analyzing quantities, improving query speed. 

 

15. Columnar File Representation 

ORC and Parquet file formats store data in columns rather than rows, used in big data for compression 
and speed. 

Example: A Parquet file for a customer’s shopping details might store columns like transaction_id, 
customer_id, and amount separately. 

 

16. Storage Organization in Main-Memory Databases 

Main-memory databases store data directly in RAM, speeding up access. 

Example: An in-memory analytics database might store sales transactions as columns in RAM, enabling 
real-time analysis. 

 

Indexing 

Indexing is a database mechanism that improves the efficiency of data retrieval. An index allows the 
database to find and access data faster than scanning every record in a table. This class covers fundamental 
indexing concepts, ordered indices, B+ trees, hashing, write-optimized indices, and spatial and temporal 
indexing. 
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1. Basic Concepts of Indexing 

An index is created to speed up access to data. For instance, a library’s author catalog is an index of books 
by author, enabling efficient lookups. 

 Search Key: Attribute or set of attributes used to look up records. 
 Index Entry: Consists of a search key and a pointer to the record. 

Index files are smaller than original files, with two primary types: 

 Ordered Indices: Stores search keys in sorted order. 
 Hash Indices: Distributes search keys across “buckets” based on a hash function. 

 

2. Index Evaluation Metrics 

Metrics to assess indexing efficiency include: 

 Access Types: Ability to retrieve records with specific attributes or within a value range. 
 Access Time: Speed of retrieving data. 
 Insertion and Deletion Times: Time required to add or remove records. 
 Space Overhead: Amount of storage used by the index. 

 

3. Ordered Indices 

Ordered indices maintain index entries sorted by search key values. 

 Clustering (Primary) Index: The search key specifies the order of the file, typically matching the 
primary key. 

 Secondary Index: Uses a search key different from the file’s sequential order, known as a non-
clustering index. 

 Index-Sequential File: A sequential file ordered by a search key, with a primary index on that 
key. 

 

4. Dense Index Files 

In a dense index, every search-key value appears in the index. This index type requires more space but 
allows faster record access. 

Example: For an instructor table indexed by ID, each instructor ID has a corresponding index entry. 

ID Name Dept 

101 Alice Math 
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ID Name Dept 

102 Bob Science 

 

5. Sparse Index Files 

A sparse index includes entries only for some search-key values, useful for files ordered by the search key. 

Sparse Index Access: 

1. Locate the index record with the largest search key less than K. 
2. Search the file sequentially from this point. 

Sparse indices use less space but may increase access time. 

 

6. Multilevel Index 

When an index doesn’t fit into memory, a multilevel index helps by treating the index as a file and 
constructing a sparse index on it. 

 Outer Index: A sparse index of the basic index. 
 Inner Index: The primary index file. 

This hierarchy may have multiple levels if necessary, though all levels must be updated upon insertions or 
deletions. 

 

7. Composite Keys 

Composite indices use multiple attributes as search keys. 

Example: An instructor index on (name, ID) allows sorting by both attributes lexicographically. (John, 
12121) is less than (John, 13514), which is less than (Peter, 11223). 

 

8. B+-Tree Index Files 

B+-trees are balanced tree structures widely used for indexing. Key properties include: 

 All paths from root to leaf are the same length. 
 Each node, except for the root, has between ⌈n/2⌉ and n children. 
 Leaf nodes contain search keys and pointers to records or buckets. 

B+-Tree Node Structure: 
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 Each node holds search keys (K1, K2,...) in sorted order. 
 Pointers (P1, P2,...) link to children nodes or records. 

Example: A B+-tree for a 6-node structure maintains each node’s keys in order, balancing access paths and 
ensuring efficient search, insertion, and deletion operations. 

 

9. Hashing 

Hashing distributes records across buckets based on a hash function. It maps search-key values to bucket 
addresses, allowing efficient access, insertion, and deletion. 

Static Hashing 

In static hashing, each bucket address corresponds to a fixed set of search-key values. 

Example: For an instructor table hashed by dept_name, instructors are grouped by department, allowing 
fast retrieval based on department names. 

 

10. Bucket Overflow and Chaining 

Bucket Overflow: Occurs when multiple records are hashed to the same bucket. Overflow Chaining: 
Manages overflow by linking additional buckets, forming a linked list. 

 

11. Dynamic Hashing 

Unlike static hashing, dynamic hashing allows bucket numbers to grow or shrink: 

 Linear Hashing: Expands incrementally by rehashing records in overflowed buckets. 
 Extendable Hashing: Increases the hash table size without creating new buckets by sharing 

buckets among hash values. 

 

12. Comparison of Ordered Indexing and Hashing 

Considerations for selecting between ordered indices and hashing include: 

 Cost: Hashing may require fewer reorganizations than ordered indexing. 
 Access Type: Hashing optimizes retrieval of specific values; ordered indices suit range queries. 
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13. Bitmap Indices 

Bitmap indices store an array of bits for each attribute value, useful when attributes have limited distinct 
values. 

Example of Bitmap Index on Gender: 

 Male: 10010 
 Female: 01101 

Combining bitmaps with AND or OR operations enables efficient multi-attribute queries. 

 

14. Spatial and Temporal Indices 

Databases can store and query spatial data (like points, lines, polygons) and temporal data (data with time 
intervals). 

 k-d Trees: Used for spatial data by dividing space iteratively along dimensions. 
 Quadtrees: Each node represents a region, dividing it into four quadrants. 
 R-Trees: Useful for complex, multi-dimensional data by generalizing B+-trees for bounding 

boxes. 

Example R-Tree 

An R-tree may index geometric shapes like rectangles by bounding them in minimal rectangles, enabling 
spatial queries like "find all objects within this area." 

Temporal Indexing: Uses a time dimension to store data intervals, often employing an R-tree for 
managing spatial-temporal data. 

 

Transaction 

Transactions are fundamental units of operation in database systems, involving a series of steps that read 
and update data to ensure consistency, isolation, and reliability. This class covers transaction concepts, 
transaction states, the ACID properties, serializability, concurrency control, and SQL transaction handling. 

 

1. Transaction Concept 

A transaction is a logical unit of program execution that accesses and possibly updates various data items. 
For example, a transaction transferring $50 from account A to account B involves: 

1. read(A) 
2. A := A – 50 
3. write(A) 
4. read(B) 
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5. B := B + 50 
6. write(B) 

Key issues include: 

 Failure Handling: Ensures data consistency despite system or hardware failures. 
 Concurrency Control: Manages simultaneous transactions without conflict. 

 

2. ACID Properties 

The ACID properties of transactions are essential for data integrity and system reliability: 

 Atomicity: Ensures that all operations in a transaction are fully completed or have no effect if 
interrupted. If the above transfer fails after updating A but before updating B, the transaction 
should revert A’s balance to maintain integrity. 

 Consistency: Enforces database integrity rules, such as primary and foreign key constraints, 
ensuring each transaction starts and ends with a consistent database. 

 Isolation: Transactions operate as though they’re isolated; intermediate steps in one transaction 
are invisible to others. 

 Durability: Guarantees that once a transaction is completed, its effects persist despite subsequent 
failures. 

Example: In a banking system, the ACID properties ensure that transfers are accurately reflected without 
loss, duplication, or partial processing. 

 

3. Transaction States 

A transaction can be in one of five states: 

1. Active: The transaction is executing. 
2. Partially Committed: The final statement has executed but may not be saved. 
3. Failed: An error prevents completion. 
4. Aborted: After a rollback, returning the database to its initial state before the transaction began. 
5. Committed: Successfully completed, with all changes saved. 

 

4. Concurrent Executions 

Executing multiple transactions concurrently improves system efficiency by: 

 Increasing CPU and disk utilization, as transactions utilize different resources. 
 Reducing response time for short transactions by allowing non-blocking concurrent processing. 

For example, a transaction calculating daily sales totals can run alongside individual transaction processing 
without waiting for completion. 
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5. Schedules and Serializability 

A schedule defines the order of instruction execution among concurrent transactions. For correctness, 
schedules must preserve the logical order within each transaction. 

Serializability 

A serializable schedule ensures a consistent outcome as though transactions executed sequentially, with no 
interleaving. 

Example of a serial schedule: 

 T1T_1T1: Transfer $50 from A to B. 
 T2T_2T2: Transfer 10% of A’s balance to B. 

Schedules can be conflict serializable (achieved by rearranging non-conflicting operations) or view 
serializable (based on equivalent reads and writes). 

 

6. Conflict Serializability 

Conflict serializability arises when schedules can be transformed into serial equivalents by swapping non-
conflicting instructions. 

Conflicting Instructions 

Instructions conflict if they access the same data item and at least one is a write. Examples include: 

 read(Q) followed by write(Q) (conflict). 
 write(Q) followed by write(Q) (conflict). 

A conflict serializable schedule maintains consistency by preserving these dependencies. 

 

7. View Serializability 

View serializability ensures two schedules yield the same outcome by reading and writing data 
consistently. View serializability requirements include: 

1. Initial value reads must be preserved. 
2. Subsequent reads must match data writes from the same transaction. 
3. The final write in each transaction must align with serial scheduling. 

Example: A schedule where transactions read each other’s updates without conflicting can still achieve 
view serializability. 
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8. Testing for Serializability 

Testing involves creating a precedence graph with transactions as vertices. An arc is added from TiT_iTi 
to TjT_jTj if TiT_iTi accesses a data item before TjT_jTj in a conflicting operation. 

Conflict Serializability Test 

A schedule is conflict serializable if its precedence graph is acyclic. Topologically sorting the graph 
provides a valid serial order. 

 

9. Recoverable and Cascadeless Schedules 

Recoverable Schedules: A schedule is recoverable if a transaction committing after another depends on its 
completion. If a transaction is aborted, others depending on its results can also roll back. 

Example of cascading rollback: 

 T1T_1T1: write(X) followed by T2T_2T2: read(X) means if T1T_1T1 fails, T2T_2T2 must also 
roll back. 

Cascadeless Schedules avoid cascading rollbacks by ensuring a transaction only reads committed data. 

 

10. Concurrency Control 

Concurrency control mechanisms ensure schedules are: 

1. Conflict or view serializable. 
2. Recoverable and, ideally, cascadeless. 

Techniques vary between pessimistic locking (ensuring exclusive access) and optimistic methods 
(detecting and managing conflicts after they occur). 

Example of Locking 

In a two-phase locking (2PL) protocol, transactions lock data items, preventing conflicts until they’re ready 
to commit, at which point all locks are released. 

 

11. SQL Transaction Commands 

Transactions in SQL can be controlled using: 

 BEGIN TRANSACTION: Marks the start. 
 COMMIT: Saves changes and ends the transaction. 
 ROLLBACK: Reverts all changes. 
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SQL supports setting isolation levels: 

 Serializable: Highest isolation, preventing other transactions from accessing uncommitted data. 
 Read Committed: Reads only committed data but allows changes by others during a transaction. 
 Read Uncommitted: Allows reading uncommitted data. 

Example: 

sql 
   
BEGIN TRANSACTION; 
UPDATE accounts SET balance = balance - 100 WHERE account_id = 'A'; 
UPDATE accounts SET balance = balance + 100 WHERE account_id = 'B'; 
COMMIT; 
 

 

Concurrency Control 

Concurrency control is fundamental to database systems, ensuring that multiple transactions execute 
correctly and securely when they access shared resources. This class covers lock-based protocols, deadlock 
management, timestamp protocols, multi-version concurrency, and concurrency control in index structures. 

 

1. Lock-Based Protocols 

Locks control concurrent access to data items, ensuring correct execution across multiple transactions. 
Locks can be in two modes: 

1. Exclusive (X) Lock: Allows read and write access. Only one transaction can hold an X-lock at a 
time. 

2. Shared (S) Lock: Permits read-only access. Multiple transactions can share this lock 
simultaneously. 

Lock requests are managed by a concurrency-control manager, granting permissions based on a lock-
compatibility matrix. For example, if one transaction holds an S-lock, other transactions can still read, but 
if an X-lock is held, all others must wait. 

 

2. Locking Protocols and Serializability 

A locking protocol specifies rules for transactions in requesting and releasing locks, enforcing serializable 
schedules by limiting concurrent actions. 

Schedule Example with Locks 

In the schedule below, transaction T1 reads and writes to X while T2 waits due to incompatible locks: 

 T1: lock-X(X), write(X), unlock(X) 
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 T2: waits for X to be unlocked before proceeding. 

This protocol prevents conflicts by enforcing serializability through lock-based restrictions. 

 

3. Deadlock and Starvation 

A deadlock occurs when transactions wait indefinitely due to cyclic dependencies in resource locking. 

 Example: Transaction T3 locks A and waits for B, while T4 locks B and waits for A. 

Deadlock resolution methods: 

1. Timeouts: Abort transactions after a wait limit. 
2. Deadlock Detection: Use a wait-for graph to detect cycles, triggering rollback. 

Starvation can also occur if a transaction repeatedly waits, often resolved by managing lock priorities or 
ensuring fair scheduling. 

 

4. Two-Phase Locking Protocol (2PL) 

The two-phase locking protocol ensures serializability by dividing transactions into two phases: 

1. Growing Phase: Transactions acquire locks without releasing any. 
2. Shrinking Phase: Locks are released without acquiring new ones. 

This protocol guarantees that transactions execute in a serializable order based on the order of their final 
lock acquisitions, known as lock points. 

 

5. Lock Conversions and Automatic Locking 

Lock Conversion allows changing lock types within two-phase locking: 

 Upgrade from S-lock to X-lock in the growing phase. 
 Downgrade from X-lock to S-lock in the shrinking phase. 

Automatic Locking processes standard read/write commands without explicit lock requests. For instance, 
a read(D) command automatically acquires an S-lock if compatible or waits if incompatible. 

 

6. Implementation of Locking 

A lock manager tracks granted locks and pending requests in a lock table: 

 Granted Locks: Show current lock status. 
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 Pending Requests: Queue of transactions waiting for specific locks. 

Example Lock Table: 

Data Item Lock Type Granted To Waiting Transactions 

X X T1 T2, T3 

Y S T2, T4 T5 

 

7. Graph-Based Protocols 

Graph-based protocols enforce concurrency by arranging data items in a directed acyclic graph (DAG). 
Transactions can only access data in a specified order, reducing the risk of deadlocks and cycles. The tree 
protocol is a common graph-based protocol that ensures serializability and deadlock freedom by requiring 
transactions to lock data items in a tree hierarchy, starting from the root. 

 

8. Deadlock Handling and Prevention 

Deadlock Prevention ensures that the system does not enter a deadlock state. Techniques include: 

 Wait-die scheme: Older transactions wait for younger ones, but younger transactions rollback for 
older ones. 

 Wound-wait scheme: Older transactions roll back younger ones instead of waiting. 

Deadlock Detection uses a wait-for graph where a cycle indicates a deadlock, prompting rollback of the 
least costly transaction. 

 

9. Multiple Granularity Locking 

Multiple granularity locking allows locks at various data levels, such as tables, rows, or fields. It’s 
organized in a hierarchy from larger (coarse-grained) to smaller (fine-grained) items, providing higher 
concurrency while balancing overhead. Transactions follow a set of intention locks to manage their access 
levels: 

Lock Type IS IX S SIX X 

IS Yes Yes Yes No No 

IX Yes Yes No No No 

S Yes No Yes No No 

SIX No No No No No 



 Prepared by: Dr. Jagdeep Singh, AP (CSE), SLIET Longowal 

62 
 

Lock Type IS IX S SIX X 

X No No No No No 

 

10. Phantom Phenomenon 

The phantom phenomenon occurs when a transaction reads data that changes mid-operation, causing non-
serializable schedules. For instance, a query counting employees in a department might miss new additions 
due to concurrent inserts. 

To handle phantoms, transactions can lock related index entries or use predicate locks on queried 
conditions, ensuring a stable view. 

 

11. Timestamp-Based Concurrency Control 

In timestamp-based protocols, transactions are assigned timestamps upon entry, determining the order of 
their actions: 

 Read/Write Rules: Transactions read or write only if their timestamps align with the current 
record status. 

 Conflict Resolution: Older timestamps wait while newer ones rollback if conflicts arise. 

For example, if transaction T1 has a timestamp of 5 and T2 has a timestamp of 6, T1 must complete all 
operations on a data item before T2 can proceed. 

 

12. Multiversion Concurrency Control (MVCC) 

Multiversion Concurrency Control (MVCC) maintains several versions of data items to increase 
concurrency: 

 Each write generates a new version, while reads retrieve the appropriate version based on 
transaction timestamps. 

 Example: If T1 reads version V1 of X while T2 creates V2 of X, T1 continues using V1, ensuring 
non-blocking reads. 

Snapshot Isolation provides each transaction with a consistent snapshot of data, preventing conflicts. It 
uses the first-committer-wins rule, where a transaction only commits if no concurrent transaction has 
modified its intended updates. 

 

13. Weak Levels of Consistency 

Weaker isolation levels balance concurrency and consistency. SQL allows several isolation levels: 
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1. Serializable: Ensures full isolation, avoiding all anomalies. 
2. Repeatable Read: Reads committed records and repeatable data but doesn’t prevent phantom 

reads. 
3. Read Committed: Allows reading only committed data. 
4. Read Uncommitted: Reads uncommitted changes, risking dirty reads. 

SQL’s default level varies but commonly is Read Committed for performance. 

 

14. Concurrency Control in Index Structures 

Indexes are accessed frequently, requiring specialized concurrency protocols. Common techniques include: 

 Crabbing Protocol: Locks nodes while moving down a B+-tree, releasing locks as it progresses. 
 B-Link Tree Protocol: Improves concurrency by unlocking parent nodes before locking child 

nodes, handling mid-operation structural changes. 

 

 

 

 

Recovery System 

A robust recovery system is vital for ensuring database consistency and reliability in case of errors, crashes, 
or failures.  

 

1. Failure Classification 

Failures can occur at various levels and are classified as follows: 

 Transaction Failure: Internal errors that prevent a transaction from completing. 
o Logical errors: Transaction issues like constraint violations. 
o System errors: Database termination of transactions due to deadlocks or other internal 

conflicts. 
 System Crash: Hardware or software failures, such as power outages, causing the system to crash. 

o Fail-Stop Assumption: Presumes non-volatile storage remains intact despite crashes. 
 Disk Failure: Physical damage like a head crash, causing data loss. 

o Detection: Disk checksums detect storage failures. 

 

2. Recovery Algorithms 

Recovery algorithms ensure database consistency by maintaining atomicity and durability. 
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Example: For a transaction T_i transferring $50 from account A to B: 

1. Subtract $50 from A. 
2. Add $50 to B. 

If a failure occurs after the first step, the database might enter an inconsistent state. Recovery algorithms: 

1. Gather sufficient data during regular operations. 
2. Use this data post-failure to restore the database to a consistent state. 

 

3. Storage Structure 

Storage in databases can be classified into three types: 

 Volatile Storage: Does not survive crashes (e.g., main memory). 
 Nonvolatile Storage: Survives system crashes (e.g., disk, SSD). 
 Stable Storage: Simulated by maintaining copies on distinct nonvolatile media to approximate 

resilience to all failures. 

Stable Storage Implementation: 

1. Replication: Store multiple copies of each block on separate disks, sometimes at remote sites. 
2. Protection Against Failures During Transfers: 

o Write to one physical block. 
o Upon success, write to a secondary block. 
o Completion requires both copies to succeed. 

 

4. Data Access 

Data items can reside temporarily in memory as buffer blocks or permanently on disk as physical blocks. 

1. Input Operation: Loads a disk block to memory. 
2. Output Operation: Writes a memory buffer to disk. 

Each transaction T_i uses a private workspace, where read(X) and write(X) operations load and modify 
local copies before committing the changes to disk. 

 

5. Recovery and Atomicity 

To ensure atomicity, transactions record changes in stable storage logs before modifying the database. 

Log-Based Recovery 

A log is a sequence of records detailing updates on the database. Key log types: 



 Prepared by: Dr. Jagdeep Singh, AP (CSE), SLIET Longowal 

65 
 

1. <T_i start>: Marks the start of a transaction. 
2. <T_i, X, V1, V2>: Logs the update of data item X, showing both old and new values. 
3. <T_i commit>: Indicates successful transaction completion. 

Two main log-based approaches: 

1. Immediate Modification: Updates are logged and written to memory before transaction commits. 
2. Deferred Modification: Changes are logged but only written to disk when the transaction 

commits. 

 

6. Transaction Commit 

A transaction commits once its log entries are securely saved. Log entries are written before database 
updates, ensuring durability even if system crashes occur. 

Example: For transaction T_0, the log entries might appear as: 

1. <T_0 start> 
2. <T_0, A, 1000, 950> 
3. <T_0 commit> 

The entry <T_0 commit> ensures all updates by T_0 are saved before any subsequent failure. 

 

7. Undo and Redo Operations 

Recovery algorithms define two main operations: 

1. Undo: Reverts data items to their original values using the log. 
2. Redo: Reapplies transaction updates from the log to ensure committed changes. 

Example: 

1. If T_1 changes A from 200 to 150, the undo operation resets A to 200. 
2. A redo operation ensures any incomplete updates are finalized. 

 

8. Checkpoints 

Checkpoints streamline recovery by periodically saving the database state, thus reducing the number of log 
records to process during recovery. 

Checkpoint Process: 

1. Save all in-memory log records. 
2. Save all modified buffers to disk. 
3. Write <checkpoint L>, listing all active transactions. 
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During recovery, only transactions post-checkpoint require processing, optimizing recovery time. 

Example: Transactions T_2 and T_3 started after the checkpoint may require redo, while T_4 started 
before and may be ignored if it was committed. 

 

9. Log-Based Recovery Algorithms 

Recovery methods operate in two phases: 

1. Redo Phase: Reapplies updates from committed transactions. 
2. Undo Phase: Reverts uncommitted changes. 

During recovery, if <T_i start> exists but not <T_i commit>, T_i undergoes undo operations. 

 

10. Log Record Buffering 

Log Buffering improves performance by temporarily storing logs in memory, committing them in bulk to 
stable storage. Before data output, all related log records must be written to storage (known as Write-
Ahead Logging or WAL). 

 

11. Database Buffering 

Database buffering maintains recently accessed data blocks in memory, employing strategies to decide 
when to write data to disk. 

 No-Force Policy: Updated blocks aren’t written to disk immediately, reducing I/O. 
 Steal Policy: Permits uncommitted updates to be written to disk, aiding recovery. 

Write-Ahead Logging (WAL) requires all relevant log records to be saved before data blocks are written 
to ensure atomicity and consistency. 

 

12. Fuzzy Checkpointing 

Fuzzy Checkpointing reduces checkpoint interruptions: 

1. Pause updates temporarily. 
2. Write <checkpoint L> to log. 
3. Note modified blocks and save them to disk, allowing transactions to continue in the meantime. 

Advantage: Minimal interruption to transaction processing, as checkpoints are handled asynchronously. 
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13. Failure Recovery and Storage Dumping 

In severe cases, like loss of nonvolatile storage, a full dump (copy of the database) to stable storage 
enables restoration. 

During recovery: 

1. Restore from the last dump. 
2. Use log entries to reapply committed transactions. 

 

14. Remote Backup Systems 

Remote backup systems improve database availability by maintaining transaction copies at separate 
locations. 

 Heartbeat Mechanism: Backup sites monitor primary sites to detect failures. 
 Transfer of Control: Upon primary failure, the backup site uses the latest logs for recovery, 

performing a takeover. 

Backup Configurations: 

 One-safe: Commits only at primary, risking backup lag. 
 Two-safe: Ensures transactions are committed at both sites. 
 Hot-Spare: Continuously applies logs, enabling quick takeover. 

 

PL/SQL (Procedural Language/Structured Query Language) 

PL/SQL (Procedural Language/Structured Query Language) is a powerful procedural extension to SQL, 
developed by Oracle for use within its relational database management systems (RDBMS). It enables the 
creation of complex, efficient programs that can execute SQL commands along with procedural logic, 
making it suitable for enterprise-level database applications. Here’s an in-depth look: 

Key Concepts and Features 

1. Block Structure: 

o PL/SQL code is organized into blocks, each containing three main sections: 

 Declaration: Variables, constants, cursors, and subprograms are declared here. 

 Execution: Contains the SQL statements and procedural code to be executed. 

 Exception Handling: Defines how errors and exceptions are managed within the 
block. 

o PL/SQL blocks are either anonymous (unlabeled, temporary blocks) or named (stored as 
functions, procedures, or triggers in the database). 
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2. Control Structures: 

o Conditional Statements: Use IF-THEN-ELSE statements to execute specific code blocks 
based on conditions. 

o Loops: Supports several looping constructs: 

 LOOP: General-purpose loop, which can be terminated with EXIT. 

 WHILE LOOP: Repeats as long as a specified condition is true. 

 FOR LOOP: Runs a loop a predefined number of times. 

o Branching Statements: Includes GOTO, which allows jumping to a specific point in the 
code for complex logic. 

3. Cursors: 

o Implicit Cursors: Automatically created by Oracle when an SQL query is executed. 
Suitable for single-row queries. 

o Explicit Cursors: Used for handling queries that return multiple rows, allowing row-by-
row processing. 

4. Error Handling: 

o Exception Handling: PL/SQL has robust exception-handling capabilities with predefined 
exceptions (like NO_DATA_FOUND and TOO_MANY_ROWS) and user-defined 
exceptions, which improve application reliability. 

o Built-in Exceptions: Oracle provides several predefined exceptions for common errors, 
which can be handled within the exception block. 

5. Stored Procedures and Functions: 

o Procedures: Named PL/SQL blocks that perform specific tasks but do not return values. 
They can take input (IN), output (OUT), or both (IN OUT) parameters. 

o Functions: Similar to procedures but always return a single value, making them ideal for 
calculations and data transformations. 

o Stored procedures and functions are reusable, reducing redundancy in code. 

6. Triggers: 

o Database Triggers: PL/SQL code that automatically executes in response to certain 
events on a table or view, such as INSERT, UPDATE, or DELETE. 

o Triggers are useful for enforcing complex business rules, auditing changes, and 
maintaining data integrity. 

7. Packages: 



 Prepared by: Dr. Jagdeep Singh, AP (CSE), SLIET Longowal 

69 
 

o Packages: Group related procedures, functions, cursors, and variables together, 
improving code organization, security, and reusability. 

o Packages contain two parts: 

 Specification: Declares public elements available to the outside. 

 Body: Contains the actual implementation of the procedures and functions. 

8. Collections and Record Types: 

o Support data structures like arrays in the form of VARRAYS, nested tables, and 
associative arrays (index-by tables). 

o Allow grouping multiple related variables into a single composite data type, useful for 
handling rows of data. 

9. Dynamic SQL: 

o Dynamic SQL: Allows SQL statements to be constructed and executed at runtime using 
the EXECUTE IMMEDIATE command. This feature is useful for situations where the 
SQL structure isn’t known until runtime. 

Advantages of PL/SQL 

1. PL/SQL reduces network traffic by allowing multiple SQL statements to be sent to the database 
server in a single block. 

2. Stored procedures and functions hide the implementation details, allowing users to perform 
operations without direct table access. 

3. Blocks, procedures, functions, and packages create modular code, making it easier to read, 
maintain, and debug. 

4. Advanced exception handling helps in managing runtime errors effectively, increasing application 
robustness. 

Examples: 

 
Program: WAP in PL/SQL for adding two numbers. 

DECLARE 

   num1 NUMBER := 10;  -- First number 

   num2 NUMBER := 20;  -- Second number 

   sum  NUMBER;        -- Variable to store the sum 

BEGIN 
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   -- Calculate the sum 

   sum := num1 + num2; 

 

   -- Display the result 

   DBMS_OUTPUT.PUT_LINE('The sum of ' || num1 || ' and ' || num2 || ' is: ' || sum); 

END; 

/ 

 

Output: 

 

Fig.8:  Output screen of Sum of two numbers in PL\SQL 

 
Program: WAP in PL/SQL for reversing the number. For example the number is 
12345 and reverse number will be 54321. 
 

DECLARE 

   original_num NUMBER := 12345;  -- Original number to be reversed 
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   reversed_num NUMBER := 0;      -- Variable to store the reversed number 

   remainder    NUMBER;           -- Variable to store the remainder 

BEGIN 

   -- Display the original number 

   DBMS_OUTPUT.PUT_LINE('Original number: ' || original_num); 

 

   -- Reverse the number 

   WHILE original_num > 0 LOOP 

      remainder := MOD(original_num, 10);               -- Get the last digit 

      reversed_num := (reversed_num * 10) + remainder;  -- Append the last digit to the reversed 
number 

      original_num := TRUNC(original_num / 10);         -- Remove the last digit from the original 
number 

   END LOOP; 

 

   -- Display the reversed number 

   DBMS_OUTPUT.PUT_LINE('Reversed number: ' || reversed_num); 

END; 

/ 
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Fig.9:  Output screen of reverse number in PL\SQL 

 
 
Program: WAP in PL/SQL to find the number is even or odd. 
 

DECLARE 

   num NUMBER := 7;  -- Number to check (you can change this value) 

BEGIN 

   -- Check if the number is even or odd 

   IF MOD(num, 2) = 0 THEN 

      DBMS_OUTPUT.PUT_LINE(num || ' is an Even number.'); 

   ELSE 

      DBMS_OUTPUT.PUT_LINE(num || ' is an Odd number.'); 

   END IF; 

END; 

/ 
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Fig.10:  Output screen of even/odd number in PL\SQL 

 

Program: WAP in PL/SQL to count numbers from 1 to 20. 
 

DECLARE 

   counter NUMBER := 1;  -- Start counter from 1 

BEGIN 

   WHILE counter <= 20 LOOP 

      DBMS_OUTPUT.PUT_LINE(counter);  -- Display the current number 

      counter := counter + 1;         -- Increment the counter by 1 

   END LOOP; 

END; 

/ 

 

Output 
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Fig.11:  Output screen of count numbers from 1 to 20 in PL\SQL 

 

 

 

 


